Exploring the Preparation of Calcium-Doped Zinc Aluminate Ceramic Nanoparticles for Microstrip Patch Antenna Fabrication

Article Preview

Abstract:

Zinc aluminate (ZnAl2O4) dielectric materials have proven crucial in microwave applications, particularly in antenna miniaturization. This article presents the characteristics of sol-gel-prepared Ca-doped ZnAl2O4 (ZnAl2O4Ca) ceramic nanoparticles for their application in microstrip patch antenna (MPA). We examined the crystallinity, functional groups, morphology, and elemental properties of ZnAl2O4Ca ceramic nanoparticles using different techniques. Later, a prototype antenna was fabricated and evaluated, which demonstrated the return loss of -23.4 dB and -19.2 dB with voltage standing wave (VSWR) ratios of 1.1 and 1.2 at resonant frequency ( ) values 4.5 and 6.4 GHz, respectively. The presented work demonstrates that the prepared ceramic nanoparticles possess better microwave properties, enabling the fabrication of a patch antenna for c-band communication with two resonant peaks having reasonably good return loss.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1099)

Pages:

145-155

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhou, Di; Guo, Dan; Li, Wen-Bo; Pang, Li-Xia; Yao, Xi; Wang, Da-Wei; Reaney, Ian M, Novel temperature stable high εr microwave dielectrics in the Bi2O3-TiO2-V2O5 system. J. Mater. Chem. C, 10.1039.C6TC01431C–(2016)

DOI: 10.1039/C6TC01431C

Google Scholar

[2] Zhou, Di; Li, Jing; Pang, Li-Xia; Chen, Guo-Hua; Qi, Ze-Ming; Wang, Da-Wei; Reaney, Ian M, Crystal Structure, Infrared Spectra, and Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Y,Bi)VO4 Solid-Solution Ceramics. ACS Omega, 1(5), 963–970, (2016)

DOI: 10.1021/acsomega.6b00274

Google Scholar

[3] Cava, R.J. Dielectric materials for applications in microwave communications, Journal of Materials Chemistry, 11(1), (2001).54–62

DOI: 10.1039/b003681l

Google Scholar

[4] Zhou, Di; Pang, Li-Xia; Wang, Da-Wei; Reaney, Ian M, BiVO4 based high k microwave dielectric materials: a review. Journal of Materials Chemistry C, 10.1039.C8TC02260G–(2018)

DOI: 10.1039/C8TC02260G

Google Scholar

[5] Guo, Huan‐Huan; Zhou, Di; Liu, Wen‐Feng; Pang, Li‐Xia; Wang, Da‐Wei; Su, Jin‐Zhan; Qi, Ze‐Ming, Microwave Dielectric Properties of Temperature‐Stable Zircon‐Type (Bi, Ce)VO4 Solid‐Solution Ceramics. Journal of the American Ceramic Society, jace.16759–(2019)

DOI: 10.1111/jace.16759

Google Scholar

[6] Wang, Shi-Fa; Sun, Guang-Zhuang; Fang, Lei-Ming; Lei, Li; Xiang, Xia; Zu, Xiao-Tao), A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific Reports, 12849–(2015

DOI: 10.1038/srep12849

Google Scholar

[7] Jiwan Ghimire and Dong-You Choi, Ultra-Wide Band Double-Slot Podal and Antipodal Vivaldi Antennas Feed by Compact Out-Of-Phase Power Divider Slot for Fluid Properties Determination. Sensors 2022, 22, 4543

DOI: 10.3390/s22124543

Google Scholar

[8] Nautiyal, A.; Autret, C.; Honstettre, C.; De Almeida-Didry, S.; El Amrani, M.; Roger, S.; Negulescu, B.; Ruyter, A, Local analysis of the grain and grain boundary contributions to the bulk dielectric properties of Ca(Cu3−yMgy)Ti4O12 ceramics: Importance of the potential barrier at the grain boundary. Journal of the European Ceramic Society, S0955221915302934–(2016)

DOI: 10.1016/j.jeurceramsoc.2015.12.035

Google Scholar

[9] Roshni, Satheesh Babu; Sebastian, Mailadil Thomas; Surendran, Kuzhichalil Peethambharan, Can zinc aluminate-titania composite be an alternative for alumina as microelectronic substrate? Scientific Reports, 7, 40839–(2017)

DOI: 10.1038/srep40839

Google Scholar

[10] Joseph, Nina; Varghese, Jobin; Teirikangas, Merja; Sebastian, Mailadil Thomas; Jantunen, Heli, Ultra-low sintering temperature ceramic composites of CuMoO4 through Ag2O addition for microwave applications. Composites Part B: Engineering, 141, 214–220, (2018)

DOI: 10.1016/j.compositesb.2017.12.055

Google Scholar

[11] Pang, Li-Xia; Liu, Wei-Guo; Zhou, Di; Yue, Zhen-Xing, Novel glass-free low-temperature fired microwave dielectric ceramics: Bi(Ga1/3Mo2/3)O4. Ceramics International, 42(3), 4574–4577, (2016)

DOI: 10.1016/j.ceramint.2015.11.152

Google Scholar

[12] Wang, Dawei; Siame, Beatia; Zhang, Shiyu; Wang, Ge; Ju, Xingshen; Li, Jinglei; Lu, Zhilun; Vardaxoglou, Yiannis; Whittow, Will; Cadman, Darren; Sun, Shikuan; Zhou, Di; Song, Kaixin; Reaney, Ian M, Direct Integration of Cold Sintered, Temperature-Stable Bi2Mo2O9-K2MoO4 Ceramics on Printed Circuit Boards for Satellite Navigation Antennas. Journal of the European Ceramic Society, S0955221920302958-(2020). doi:10.1016/. jeurceramsoc.2020.04.025

DOI: 10.1016/j.jeurceramsoc.2020.04.025

Google Scholar

[13] Wang, X; Huang, L; Li, J; Du, Y; Wang, Q; He, X; & Yuan, Y, Preparation of cobalt sulfide nanoparticles wrapped into reduced graphene oxide with tunable microwave absorption performance. Journal of Applied Physics, 127(20), 205102, (2020)

DOI: 10.1063/5.0005801

Google Scholar

[14] Chen, Chen; Xi, Jiabin; Zhou, Erzhen; Peng, Li; Chen, Zichen; Gao, Chao. Porous Graphene Microflowers for High-Performance Microwave Absorption. Nano-Micro Letters, 10(2), 26–(2018)

DOI: 10.1007/s40820-017-0179-8

Google Scholar

[15] Xiong, Zhao Xian; Zhang, Guo Feng; Xue, Hao; Huang, Jin Bao; Zheng, Qiang; You, Bai Qiang, Dielectric Properties and Microstrip Patch Antenna Performances of 0.95MgTiO3-0.05CaTiO3 Microwave Ceramics. Advanced Materials Research, 706-708, 64–68, (2013)

DOI: 10.4028/www.scientific.net/amr.706-708.64

Google Scholar

[16] Yue Yuan; Shicheng Wei; Yi Liang; Bo Wang; Yujiang Wang; Wei Xin; Xinlei Wang; Yu Zhang, Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties. Journal of Alloys and Compounds. (2021)

DOI: 10.1016/j.jallcom.2021.159040

Google Scholar

[17] Wang, Huan; Xing, Honglong; Liu, Qiangchun; Jia, Hanxiao; Chen, Aijuan; Liu, Ye. Synthesis and microwave absorbing properties of CeO2/multi-walled carbon nanotubes composites. Journal of Materials Science: Materials in Electronics, 29(22), 19308–19315, (2018)

DOI: 10.1007/s10854-018-0057-2

Google Scholar

[18] Fuyu Li; Xinyan Liu; Yuanxun Li; Tingting Tang; Yulong Liao; Yongcheng Lu; Rui Peng; Qin Zhang; Xiaohui Wu; Qiye Wen; Co-substituted CuO–ZrO2–Nb2O5 composite ceramics with low-temperature sintering and low-loss for high-performance patch antenna, Ceramics International Volume 48, Issue 13, 1 July 2022, Pages 18522-18529

DOI: 10.1016/j.ceramint.2022.03.122

Google Scholar

[19] Huang, Li; Li, Jianjun; Wang, Zhijiang; Li, Yibin; He, Xiaodong; Yuan, Ye, Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon, S000862231831073X-(2018)

DOI: 10.1016/j.carbon.2018.11.042

Google Scholar

[20] Bao, Wenli; Chen, Cong; Si, Zhenjun, Development of sulfide, nitrogen co-doping hollow carbon with wideband electromagnetic absorption capability. RSC Advances, 10(38), 22570–22577, (2020)

DOI: 10.1039/d0ra03921g

Google Scholar

[21] Zaoxia Hou; Chenyang Liu; Jialuo Gong; Junjie Wu; Shuchen Sun; Mu Zhang; Xudong Sun, Micro-Structural Design of CoFe2O4/SWCNTs Composites for Enhanced Electromagnetic Properties, Coatings 2022, 12, 1532. (2022) https:doi.org/

DOI: 10.3390/coatings12101532

Google Scholar

[22] Wenli Bao; Cong Chen; Zhenjun Si, An Easy Method of Synthesis CoxOy@C Compositewith Enhanced Microwave Absorption Performance, Nanomaterials 2020, 10, 902; (2020)

DOI: 10.3390/nano10050902

Google Scholar

[23] Srilali Siragam; R. S. Dubey; Lakshman Pappula; G. Satheesh Babu, Synthesis and investigation of dielectric ceramic nanoparticles for microstrip patch antenna applications, Scientific Reports, 12:3929, (2022)

DOI: 10.1038/s41598-022-07899-6

Google Scholar

[24] E Muhammad Abdul JamaL; D Sakthi Kumar; M R Anantharaman, On structural, optical and dielectric properties of zinc aluminate nanoparticles. 34(2), 251–259, (2011)

DOI: 10.1007/s12034-011-0071-y

Google Scholar

[25] A.A. Abd-Allah; A.M.M. Amin; A,O. Youssef; Y.M.Z. Ahmed, Fabrication of zinc aluminate (ZnAl2O4) nanoparticles from solid industrial wastes, Egy. J. Pure & Appl. Sci; 60(2) (2022): 14-26

DOI: 10.21608/ejaps.2022.132250.1032

Google Scholar