[1]
Zhou, Di; Guo, Dan; Li, Wen-Bo; Pang, Li-Xia; Yao, Xi; Wang, Da-Wei; Reaney, Ian M, Novel temperature stable high εr microwave dielectrics in the Bi2O3-TiO2-V2O5 system. J. Mater. Chem. C, 10.1039.C6TC01431C–(2016)
DOI: 10.1039/C6TC01431C
Google Scholar
[2]
Zhou, Di; Li, Jing; Pang, Li-Xia; Chen, Guo-Hua; Qi, Ze-Ming; Wang, Da-Wei; Reaney, Ian M, Crystal Structure, Infrared Spectra, and Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Y,Bi)VO4 Solid-Solution Ceramics. ACS Omega, 1(5), 963–970, (2016)
DOI: 10.1021/acsomega.6b00274
Google Scholar
[3]
Cava, R.J. Dielectric materials for applications in microwave communications, Journal of Materials Chemistry, 11(1), (2001).54–62
DOI: 10.1039/b003681l
Google Scholar
[4]
Zhou, Di; Pang, Li-Xia; Wang, Da-Wei; Reaney, Ian M, BiVO4 based high k microwave dielectric materials: a review. Journal of Materials Chemistry C, 10.1039.C8TC02260G–(2018)
DOI: 10.1039/C8TC02260G
Google Scholar
[5]
Guo, Huan‐Huan; Zhou, Di; Liu, Wen‐Feng; Pang, Li‐Xia; Wang, Da‐Wei; Su, Jin‐Zhan; Qi, Ze‐Ming, Microwave Dielectric Properties of Temperature‐Stable Zircon‐Type (Bi, Ce)VO4 Solid‐Solution Ceramics. Journal of the American Ceramic Society, jace.16759–(2019)
DOI: 10.1111/jace.16759
Google Scholar
[6]
Wang, Shi-Fa; Sun, Guang-Zhuang; Fang, Lei-Ming; Lei, Li; Xiang, Xia; Zu, Xiao-Tao), A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific Reports, 12849–(2015
DOI: 10.1038/srep12849
Google Scholar
[7]
Jiwan Ghimire and Dong-You Choi, Ultra-Wide Band Double-Slot Podal and Antipodal Vivaldi Antennas Feed by Compact Out-Of-Phase Power Divider Slot for Fluid Properties Determination. Sensors 2022, 22, 4543
DOI: 10.3390/s22124543
Google Scholar
[8]
Nautiyal, A.; Autret, C.; Honstettre, C.; De Almeida-Didry, S.; El Amrani, M.; Roger, S.; Negulescu, B.; Ruyter, A, Local analysis of the grain and grain boundary contributions to the bulk dielectric properties of Ca(Cu3−yMgy)Ti4O12 ceramics: Importance of the potential barrier at the grain boundary. Journal of the European Ceramic Society, S0955221915302934–(2016)
DOI: 10.1016/j.jeurceramsoc.2015.12.035
Google Scholar
[9]
Roshni, Satheesh Babu; Sebastian, Mailadil Thomas; Surendran, Kuzhichalil Peethambharan, Can zinc aluminate-titania composite be an alternative for alumina as microelectronic substrate? Scientific Reports, 7, 40839–(2017)
DOI: 10.1038/srep40839
Google Scholar
[10]
Joseph, Nina; Varghese, Jobin; Teirikangas, Merja; Sebastian, Mailadil Thomas; Jantunen, Heli, Ultra-low sintering temperature ceramic composites of CuMoO4 through Ag2O addition for microwave applications. Composites Part B: Engineering, 141, 214–220, (2018)
DOI: 10.1016/j.compositesb.2017.12.055
Google Scholar
[11]
Pang, Li-Xia; Liu, Wei-Guo; Zhou, Di; Yue, Zhen-Xing, Novel glass-free low-temperature fired microwave dielectric ceramics: Bi(Ga1/3Mo2/3)O4. Ceramics International, 42(3), 4574–4577, (2016)
DOI: 10.1016/j.ceramint.2015.11.152
Google Scholar
[12]
Wang, Dawei; Siame, Beatia; Zhang, Shiyu; Wang, Ge; Ju, Xingshen; Li, Jinglei; Lu, Zhilun; Vardaxoglou, Yiannis; Whittow, Will; Cadman, Darren; Sun, Shikuan; Zhou, Di; Song, Kaixin; Reaney, Ian M, Direct Integration of Cold Sintered, Temperature-Stable Bi2Mo2O9-K2MoO4 Ceramics on Printed Circuit Boards for Satellite Navigation Antennas. Journal of the European Ceramic Society, S0955221920302958-(2020). doi:10.1016/. jeurceramsoc.2020.04.025
DOI: 10.1016/j.jeurceramsoc.2020.04.025
Google Scholar
[13]
Wang, X; Huang, L; Li, J; Du, Y; Wang, Q; He, X; & Yuan, Y, Preparation of cobalt sulfide nanoparticles wrapped into reduced graphene oxide with tunable microwave absorption performance. Journal of Applied Physics, 127(20), 205102, (2020)
DOI: 10.1063/5.0005801
Google Scholar
[14]
Chen, Chen; Xi, Jiabin; Zhou, Erzhen; Peng, Li; Chen, Zichen; Gao, Chao. Porous Graphene Microflowers for High-Performance Microwave Absorption. Nano-Micro Letters, 10(2), 26–(2018)
DOI: 10.1007/s40820-017-0179-8
Google Scholar
[15]
Xiong, Zhao Xian; Zhang, Guo Feng; Xue, Hao; Huang, Jin Bao; Zheng, Qiang; You, Bai Qiang, Dielectric Properties and Microstrip Patch Antenna Performances of 0.95MgTiO3-0.05CaTiO3 Microwave Ceramics. Advanced Materials Research, 706-708, 64–68, (2013)
DOI: 10.4028/www.scientific.net/amr.706-708.64
Google Scholar
[16]
Yue Yuan; Shicheng Wei; Yi Liang; Bo Wang; Yujiang Wang; Wei Xin; Xinlei Wang; Yu Zhang, Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties. Journal of Alloys and Compounds. (2021)
DOI: 10.1016/j.jallcom.2021.159040
Google Scholar
[17]
Wang, Huan; Xing, Honglong; Liu, Qiangchun; Jia, Hanxiao; Chen, Aijuan; Liu, Ye. Synthesis and microwave absorbing properties of CeO2/multi-walled carbon nanotubes composites. Journal of Materials Science: Materials in Electronics, 29(22), 19308–19315, (2018)
DOI: 10.1007/s10854-018-0057-2
Google Scholar
[18]
Fuyu Li; Xinyan Liu; Yuanxun Li; Tingting Tang; Yulong Liao; Yongcheng Lu; Rui Peng; Qin Zhang; Xiaohui Wu; Qiye Wen; Co-substituted CuO–ZrO2–Nb2O5 composite ceramics with low-temperature sintering and low-loss for high-performance patch antenna, Ceramics International Volume 48, Issue 13, 1 July 2022, Pages 18522-18529
DOI: 10.1016/j.ceramint.2022.03.122
Google Scholar
[19]
Huang, Li; Li, Jianjun; Wang, Zhijiang; Li, Yibin; He, Xiaodong; Yuan, Ye, Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon, S000862231831073X-(2018)
DOI: 10.1016/j.carbon.2018.11.042
Google Scholar
[20]
Bao, Wenli; Chen, Cong; Si, Zhenjun, Development of sulfide, nitrogen co-doping hollow carbon with wideband electromagnetic absorption capability. RSC Advances, 10(38), 22570–22577, (2020)
DOI: 10.1039/d0ra03921g
Google Scholar
[21]
Zaoxia Hou; Chenyang Liu; Jialuo Gong; Junjie Wu; Shuchen Sun; Mu Zhang; Xudong Sun, Micro-Structural Design of CoFe2O4/SWCNTs Composites for Enhanced Electromagnetic Properties, Coatings 2022, 12, 1532. (2022) https:doi.org/
DOI: 10.3390/coatings12101532
Google Scholar
[22]
Wenli Bao; Cong Chen; Zhenjun Si, An Easy Method of Synthesis CoxOy@C Compositewith Enhanced Microwave Absorption Performance, Nanomaterials 2020, 10, 902; (2020)
DOI: 10.3390/nano10050902
Google Scholar
[23]
Srilali Siragam; R. S. Dubey; Lakshman Pappula; G. Satheesh Babu, Synthesis and investigation of dielectric ceramic nanoparticles for microstrip patch antenna applications, Scientific Reports, 12:3929, (2022)
DOI: 10.1038/s41598-022-07899-6
Google Scholar
[24]
E Muhammad Abdul JamaL; D Sakthi Kumar; M R Anantharaman, On structural, optical and dielectric properties of zinc aluminate nanoparticles. 34(2), 251–259, (2011)
DOI: 10.1007/s12034-011-0071-y
Google Scholar
[25]
A.A. Abd-Allah; A.M.M. Amin; A,O. Youssef; Y.M.Z. Ahmed, Fabrication of zinc aluminate (ZnAl2O4) nanoparticles from solid industrial wastes, Egy. J. Pure & Appl. Sci; 60(2) (2022): 14-26
DOI: 10.21608/ejaps.2022.132250.1032
Google Scholar