Fabrication and Characterization of Jute/Human Hair Reinforced Polyester Hybrid Composite

Article Preview

Abstract:

Fibre reinforced composites are used in automotive, defence and structural applications because of their economic and ecological advantage but they have limitation of lower mechanical strength. To balance this limitation of mechanical properties, hybrid composites are being manufactured. In this paper jute and human hair was selected for preparation of jute / human hair reinforced polyester hybrid composite. Human hair was selected because it is non-biodegradable and has high tensile strength. A single human hair can bear 1.5 Newton load. Recently various researcher started work towards development of bio-composites. It has been found that a mechanical property increases after adding hair in hybrid composites. Mechanical properties such as tensile strength, young modulus, and flexural strength were also compared with the already published jute composite results. To understand the fracture behaviour of composite morphology of the fractured surface was done by scanning electron microscope (SEM). The composite application is in environmental conditions addition and thus it is subjected to moisture presence, therefore study of water absorption behaviour of fabricated composite was also studied.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1100)

Pages:

3-16

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] FS. Dutta, N.K. Kim, R. Das, D. Bhattacharyya, Effects of sample orientation on the fire reaction properties of natural fibre composites, Composites Part B: Engineering. 157(2019) 195-206.

DOI: 10.1016/j.compositesb.2018.08.118

Google Scholar

[2] M. Sood, G. Dwivedi, Effect of fibre treatment on flexural properties of natural fibre reinforced composites: A review, Egyptian Journal of Petroleum. 27(2018) 775-783.

DOI: 10.1016/j.ejpe.2017.11.005

Google Scholar

[3] S.V. Joshi, L.T. Drzal, A.K. Mohanty, and S. Arora, Are natural fibre composites environmentally superior to glass fibre reinforced composites, Composites Part A: Applied Science and Manufacturing. 35 (2004) 371-376.

DOI: 10.1016/j.compositesa.2003.09.016

Google Scholar

[4] S.A.S. Goulart, T.A. Oliveira, A. Teixeira, P.C. Mileo and D.R. Mulinari, Mechanical Behaviour of Polypropylene Reinforced Palm Fibres Composites, Procedia Engineering. 10 (2011) 2034.

DOI: 10.1016/j.proeng.2011.04.337

Google Scholar

[5] G. Ajith, M.S. Kumar, and A. Elayaperumal, Experimental investigations on mechanical properties of jute fibre reinforced composites with polyester and epoxy resin matrices, Procedia Engineering. 97 (2014) 2052-2063.

DOI: 10.1016/j.proeng.2014.12.448

Google Scholar

[6] D.H. Mueller and A. Krobjilowski, New discovery in the properties of composites reinforced with natural fibres, Journal of Industrial Textiles. 33 (2003) 111-130.

DOI: 10.1177/152808303039248

Google Scholar

[7] A.S. Singha, V.K. Thakur, Fabrication, and characterization of H. Sabdariffa fibre-reinforced green polymer composites, Polymer-Plastics Technology and Engineering. 48 (2009) 482-487.

DOI: 10.1080/03602550902725498

Google Scholar

[8] Y. Tong, D.H. Isaac, Impact and fatigue behaviour of hemp fibre composites, Composites Science and Technology. 67 (2007) 3300-3307.

DOI: 10.1016/j.compscitech.2007.03.039

Google Scholar

[9] W. Paul, J. Ivens, I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics, Composites science and Technology. 63(2003) 1259-1264.

DOI: 10.1016/s0266-3538(03)00096-4

Google Scholar

[10] F.P. La Mantia, M. Morreale, Green composites: A brief review, Composites Part A: Applied Science and Manufacturing. 42 (2011), 579-588.

DOI: 10.1016/j.compositesa.2011.01.017

Google Scholar

[11] J. Summerscales, N.P.J. Dissanayake, A.S. Virk and W. Hall, A review of bast fibres and their composites. Part 1–fibres as reinforcements, Composites Part A: Applied Science and Manufacturing. 41(10) (2010)1329-1335.

DOI: 10.1016/j.compositesa.2010.06.001

Google Scholar

[12] M.R. Sanjay, G.R. Arpitha, B. Yogesha, Study on Mechanical Properties of Natural - Glass Fibre Reinforced Polymer Hybrid Composites: A Review, Materials Today: Proceedings. 2(4-5) (2015) 2959-2967.

DOI: 10.1016/j.matpr.2015.07.264

Google Scholar

[13] P. Weaver, M. Dicker, P. Duckworth, A. Baker, G. Francois, M. Hazzard, Green composites: A review of material attributes and complementary applications, Composites Part A: Applied Science and Manufacturing. 56 (2014) 280-289.

DOI: 10.1016/j.compositesa.2013.10.014

Google Scholar

[14] K. Begum, M. Islam, Natural fibre as a substitute to synthetic fibre in polymer composites: a review, Research Journal of Engineering Science. 2278 (2013) 9472.

Google Scholar

[15] T. Mukherjee, N. Kao, PLA based biopolymer reinforced with natural fibre: a review, Journal of Polymers and the Environment. 19(3) (2011) 714.

DOI: 10.1007/s10924-011-0320-6

Google Scholar

[16] S. Tara, H.N.J Reddy, Application of sisal, bamboo, coir and jute natural composites in structural up gradation, International Journal of Innovation Management and Technology. 2(3) (2011) 186.

Google Scholar

[17] A.K. Rana, A. Mandal, B.C. Mitra, R. Jacobson, Short jute fibre‐reinforced polypropylene composites: Effect of compatibilizer, Journal of Applied Polymer Science. 69(2)(1998)329-338.

DOI: 10.1002/(sici)1097-4628(19980711)69:2<329::aid-app14>3.0.co;2-r

Google Scholar

[18] M. Ramesh, K. Palani Kumar, K.H. Reddy, Mechanical property evaluation of sisal–jute–glass fibre reinforced polyester composites, Composites Part B: Engineering. 48 (2013) 1-9.

DOI: 10.1016/j.compositesb.2012.12.004

Google Scholar

[19] H. Ku, H. Wang, N. Pattara chaiya Koop and M. Trada, A review on the tensile properties of natural fibre reinforced polymer composites, Composites Part B: Engineering. 42 (4) (2011) 856-873.

DOI: 10.1016/j.compositesb.2011.01.010

Google Scholar

[20] B.C. Mitra, R.K. Basak, and M. Sarkar, Studies on jute‐reinforced composites, its limitations, and some solutions through chemical modifications of fibres, Journal of Applied Polymer Science. 67(6) (1998) 1093-1100.

DOI: 10.1002/(sici)1097-4628(19980207)67:6<1093::aid-app17>3.0.co;2-1

Google Scholar

[21] S. Banik, M.K. Basak, D. Paul, P. Nayak, D. Sardar, S.C. Sil, B.C. Sanpui, A. Ghosh, Ribbon retting of jute—a prospective and eco-friendly method for improvement of fibre quality, Industrial Crops and Products. 17 (3) (2003) 83-190.

DOI: 10.1016/s0926-6690(02)00097-3

Google Scholar

[22] L. Mathew, K.U. Joseph, R. Joseph, Isora fibres and their composites with natural rubber, Progress in Rubber Plastics and Recycling Technology. 20(2004) 337-349.

DOI: 10.1177/147776060402000404

Google Scholar

[23] Z. Ahmed, A. Firoza, Jute retting: an overview, Online J Biol Sci. 1 (2001) 685-688.

Google Scholar

[24] J. Butt, H. Mebrahtu, H. Hassan Shirvani, Strength analysis of aluminium foil parts made by composite metal foil manufacturing, Progress in Additive Manufacturing. 1 (2016) 93–103.

DOI: 10.1007/s40964-016-0008-5

Google Scholar

[25] P. Krishnasamy, G. Rajamurugan, M. Thirumurugan, Dynamic mechanical characteristics of jute fiber and 304 wire mesh reinforced epoxy composite, Journal of Industrial Textiles. 51(2021) 540–558.

DOI: 10.1177/1528083719883057

Google Scholar

[26] M. Arulmurugan, K. Prabu, G. Rajamurugan, A.S. Selvakumar, Impact of BaSO4 filler on woven Aloe Vera/Hemp hybrid composite: Dynamic mechanical analysis, Materials Research Express 6 (2019)1-32.

DOI: 10.1088/2053-1591/aafb88

Google Scholar

[27] D. Jain, A. Kothari, Hair fiber reinforced concrete. Research journal of recent sciences, 1, (2012) 128-133.

Google Scholar

[28] M. V. R. Velasco, T.C.D.S. Dias, A.Z.D. Freitas Júnior, C.A.S.D.O. Pinto, T.M. Baby A.R. Kaneko, Aparecida Sales de Oliveira Pinto Claudinéia, Mary Kaneko Telma, Baby André Rolim, Hair fiber characteristics and methods to evaluate hair physical and mechanical properties, Brazilian Journal of Pharmaceutical Sciences 45(2009)153-162.

DOI: 10.1590/s1984-82502009000100019

Google Scholar

[29] L.J. Wolfram, Human hair: a unique physicochemical composite, Journal of the American Academy of Dermatology, Vol. 48 (2003), pp.106-114.

Google Scholar

[30] M. Khan and M. Ali, Effectiveness of hair and wave polypropylene fibres for concrete roads, Construction and Building Materials Vol. 166 (2018), pp.581-591.

DOI: 10.1016/j.conbuildmat.2018.01.167

Google Scholar

[31] M.K. Sridhar, G. Basavarajjappa, S.S. Kasturi, N. Balasubramanian, Thermal stability of jute fibres, Indian Journal of Fibre and Textile Research Vol.7(1982), pp.87-91.

Google Scholar

[32] P.J. Roe, M.P. Ansell, Jute-reinforced polyester composites, Journal of Materials Science 20(1985) 4015-4020.

DOI: 10.1007/bf00552393

Google Scholar

[33] C. Elanchezhian, B. Vijaya Ramnath, M.U. Sughan, K. Suseetharan, V. Varun Kumar, R. Vezhavendan, R. Kaosik R., Evaluation of mechanical properties of human hair- bombyxmori silk fibre reinforced epoxy-based bio composite ARPN Journal of Engineering and Applied Sciences. 10 (2015)13.

Google Scholar

[34] R.K. Misra, N.V. Rachchh, Mechanical Performance of Coir Fiber Reinforced Polyester Composite, International Journal of Advanced Materials Science.1(2011)1.

Google Scholar

[35] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A.B. Bevitori, I.L.A. Da Silva, and L.L. Da Costa, Natural lignocellulosic fibres as engineering materials—an overview, Metallurgical and Materials Transactions A. 42(2011) 2963.

DOI: 10.1007/s11661-011-0789-6

Google Scholar

[36] I.P. Seshadri, and B. Bhushan, Effect of ethnicity and treatments on in situ tensile response and morphological changes of human hair characterized by atomic force microscopy, Acta Materialia. 56 (2008) 3585-3597.

DOI: 10.1016/j.actamat.2008.03.039

Google Scholar

[37] C. LaTorre, B. Bhushan, Nanotribological characterization of human hair and skin using atomic force microscopy, Ultramicroscopy 105 (2005)155-175.

DOI: 10.1016/j.ultramic.2005.06.032

Google Scholar

[38] A. Franbourg, P. Hallegot, F. Baltenneck, C. Toutaina, F. Leroy, Current research on ethnic hair, Journal of the American Academy of Dermatology 48 (2003)115-119.

DOI: 10.1067/mjd.2003.277

Google Scholar

[39] M. Benzarti , M.B. Tkaya, C.P. Mattei, H. Zahouani, Hair mechanical properties depending on age and origin, World Academy of Science, Engineering and Technology Vol. 74 (2011), pp.471-477.

Google Scholar

[40] M. A. Hazizan, C. Santulli, F. Sarasini, J. Tirillò, T. Valente, Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites, Composites Science and Technology 94 (2014) 62-70.

DOI: 10.1016/j.compscitech.2014.01.017

Google Scholar

[41] U. Magarajan, D. Arvind, N. Kannan, P. Hemanandan, A comparative study on the static mechanical properties of glass fibre vs glass-jute fibre polymer composite, Materials Today: Proceedings 5 (2018) 6711-6716.

DOI: 10.1016/j.matpr.2017.11.328

Google Scholar

[42] ASTM D638: Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA, (2010).

DOI: 10.1520/D0638-10

Google Scholar

[43] ASTM D790-10: Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, (2016).

DOI: 10.1520/d0790-15e01

Google Scholar

[44] ISO 179-1-2010: Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test (2010).

DOI: 10.3403/02224310u

Google Scholar

[45] ASTM D2240-05(2010): Standard Test Method for Rubber Property—Durometer Hardness, ASTM International, (2021).

Google Scholar

[46] H. J. Qi, K. Joyce, M.C. Boyce, Durometer hardness and the stress-strain behaviour of elastomeric materials, Rubber chemistry and technology 76 (2003) 419-435.

DOI: 10.5254/1.3547752

Google Scholar