Polyethylene Glycol (PEG) Coated Magnetite Nanoparticles Prepared by Sol-Gel Method for Biotechnology Applications

Article Preview

Abstract:

Polyethylene glycol (PEG) coatings are developed for magnetite nanoparticles (NPs). The magnetic properties of superparamagnetic type, magnetite Fe3O4 nanoparticles are suitable for biosensing applications. Magnetic NPs were prepared by Co-precipitation method and oven dried. Using a Transmission Electron Microscope (TEM) and X-Ray Diffractometer (XRD), nanoparticles size and composition were found, including the presence of Fe3O4 peak. The magnetic properties are influenced by electron environments of the Fe3+ ions within the iron oxide structure. The magnetic properties were measured by Vibrating Sample Magnetometer (VSM), thus, the results of Fe3O4 NPs exhibited a high magnetic saturation (Ms) of 61.31 emu/g. In the case of PEG coated MNPs, confirmed by Fourier Transform Infrared Spectroscopy (FT-IR), a reduced Ms of 40.00 emu/g, which decreased further following surface modification with 3-aminopropyl triethoxysilane (NH2) to 36.77 emu/g. The resulting size range of NPs of pure Fe3O4 NPs was 5-50 nm. In comparison, the PEG coated NPs were larger, 10-100 nm. In the part of protein binding and separation from solutions of bovine serum albumin (BSA) where investigated. This process will be beneficial to developing low cost sensors for biomolecules and biotechnologies in the future.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1100)

Pages:

65-73

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Edward. Furlani, Magnetic Biotransport: Analysis and Applications, Materials. 3 (2010) 2412-2446.

Google Scholar

[2] S.S.R. Challa Kumar, and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Delivery Revi. 63 (2011) 789-808.

DOI: 10.1016/j.addr.2011.03.008

Google Scholar

[3] P.B. Shete R.M. Patil N.D. Thorat A. Prasad R.S, Ningthoujam S.J. and Ghosh S.H. Pawar, Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments, Appl. Surf. Sci. 288 (2014) 149-157.

DOI: 10.1016/j.apsusc.2013.09.169

Google Scholar

[4] I.P. Paula, S.D. Machado, C.L. Laura´, C.J. Pereira Joana T. Coutinho Isabel, M.M. Ferreira Carlos, M.M. Novo, J. P. Borges, Thermal and magnetic properties of chitosan-iron oxide nanoparticles, Carb. Poly. 149 (2016) 382-390.

DOI: 10.1016/j.carbpol.2016.04.123

Google Scholar

[5] S.S. Abdelnasser Ibrahim, A.A. A-Salamah, A.M. E-Toni, M.A. El-Tayeb, Y.B. Elbadawi, Immobilization of cyclodextrin glucanotransferase on aminopropylfunctionalized silica-coated superparamagnetic nanoparticles, Elec. J. Bio. 0717-3458 (2013) 001–017.

DOI: 10.2225/vol16-issue6-fulltext-8

Google Scholar

[6] S.L. Gawali, S.B. Shelar, J. Gupta, K.C. Barick, P.A. Hassan, Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application, I. J. Bio.M.166 (2021) 851–860.

DOI: 10.1016/j.ijbiomac.2020.10.241

Google Scholar

[7] K.D. Kim, S.S. Kim, Y.H. Choa, H. T. Kim, Formation and Surface Modification of Fe3O4 Nanoparticles by Co-precipitation and Sol-gel Method, J. Ind. Eng. Chem. 13.7 (2007) 1137-1141.

Google Scholar

[8] T. Marin, P. Montoya, O. Arnache, J.A. Calderon, Influence of Surface Treatment on Magnetic Properties of Fe3O4 Nanoparticles Synthesized by Electrochemical Method, J. Phys. Chem. B. (2016) 001-051.

Google Scholar

[9] N. Rajkumar, D. Umamahaeswari, K. Ramachandran, Photoacoustics and magnetic studies of Fe3O4 nanoparticles, Inter. J. Nanosci. 9.3(2010) 243–250.

DOI: 10.1142/s0219581x10006685

Google Scholar

[10] F.C Rodrigo Marques, C. cile Garcia, P. Lecante, J.L Sidney Ribeiro, L. Noe´, J.O. Nuno Silva, V.S. Amaral, A. Milla´n, M. Verelst, Electro-precipitation of Fe3O4 nanoparticles in ethanol, J. of Magnet. and Mag. Materials, 320 (2008) 2311– 2315.

DOI: 10.1016/j.jmmm.2008.04.165

Google Scholar

[11] A.P.A. Faiyas, E.M. Vinod, J. Joseph, R. Ganesan, R.K. Pandey, Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties, J. of Magnet and Mag Materials, 322 (2010) 400–404.

DOI: 10.1016/j.jmmm.2009.09.064

Google Scholar

[12] Y. Liu, P. Liu, Z. Su, F. Li, F. Wen, Attapulgite - Fe3O4 magnetic nanoparticles via co-precipitation technique. Appl. Surf. Sci. 255 (2008) 2020–2025.

DOI: 10.1016/j.apsusc.2008.06.193

Google Scholar

[13] N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, J. Prasad, Co-precipitation method of synthesis and characterization of iron oxide nanoparticles, J. of Scient. and Indust. Resear. 73 (2014) 87-90.

Google Scholar

[14] M. Li, X. Sui, Synthesis and characterization of magnetite particles by co-precipitation method, Key Engineering Materials, 512-515 (2012) 82-85.

DOI: 10.4028/www.scientific.net/kem.512-515.82

Google Scholar

[15] F. Wang, C. Yin, X. Wei, Q. Wang, L. Cui, Y. Wang, T. Li, J. Li, Synthesis and characterization of superparamagnetic Fe3O4 nanoparticles modified with oleic acid, Integrat. Ferroelec. 153 (2014) 92–101.

DOI: 10.1080/10584587.2014.903062

Google Scholar

[16] P. Tipsawat, U. Wongpratat, S. Phumying, N. Chanlek, K. Chokprasombat, S. Maensiri, Magnetite (Fe3O4) nanoparticles: Synthesis, characterization and electrochemical properties, Appl. Surf. Sci. 446 (2018) 287-292.

DOI: 10.1016/j.apsusc.2017.11.053

Google Scholar

[17] Y. Li, H. Liao, Y. Qian, Hydrothermal synthesis of ultrafine α–Fe2O3 and Fe3O4 powders, Mater. Resear. Bulletin, 33 .6 (1998) 841-844.

DOI: 10.1016/s0025-5408(98)00055-5

Google Scholar

[18] S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang, A.A. Volinsky, Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation, Mater. Lett. 65. 12 (2011) 1882-1884.

DOI: 10.1016/j.matlet.2011.03.065

Google Scholar

[19] I. Safarik and M. Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides, Biomagn. Res. Technol.2(7) (2004)

DOI: 10.1186/1477-044X-2-7

Google Scholar

[20] M. Gao, C. Deng and X. Zhank, Magnetic nanoparticles based digestion and enrichment methods in proteomics analysis, Expert. Rev. Proteomics 8(3) (2011) 379-390.

DOI: 10.1586/epr.11.25

Google Scholar

[21] M.Z. Borowska, Magnetic nanoparticles coated with aminated starch for HSA immobilization- simple and fast polymer surface functionalization, Inter. J. Bio. Macro. 136 (2019)106-114.

DOI: 10.1016/j.ijbiomac.2019.06.044

Google Scholar

[22] X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wanga and Y. Chen, Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, J Materials Chemistry (2009) 2710-2714.

DOI: 10.1039/b821416f

Google Scholar

[23] F. Liu, F. Niu, N. Peng,ab Y. Su and Y. Yang, Synthesis, characterization, and application of Fe3O4@SiO2-NH2 nanoparticles, J RSC Advances 5(2015), 18128-18136.

DOI: 10.1039/c4ra15968c

Google Scholar