Analysis of Thermal Performance of Polylactic Acid Nanocomposite by Using T-History Method

Article Preview

Abstract:

In this study, we perceived the thermo-physical boundary and the thermal efficiency of zinc oxide for volume fraction in polylactic acid based on a heat energy storage system was examined by using the T-history method. The use of the T-history method for the assessment of thermo-physical boundary describes the specific heat capacity and thermal conductivity enhanced in solid as well as liquid phases of the mixture until the addition of 0 to 0.025% of volume part of zinc oxide in the polylactic acid nanocomposite. After the addition of the zinc oxide, the heat of fusion falls and polylactic acid has a high rate of fusion related to 0.025% volume part of zinc oxide mixed with polylactic acid. Further zinc oxide-based polylactic acid nanocomposite has 31.30% and 13.5% higher solid as well as liquid thermal conductivity in comparison with polylactic acid. Moreover, raise the particle size and analysis as well as distributions found by dynamic light dispersing method for different volume parts of zinc oxide mixed on polylactic acid. In contrast to the thermal efficiency analysis of 0.025% of volume fraction zinc oxide in polylactic acid nanocomposite has a 30.6% high heat transfer rate related to pure polylactic acid along the stage of 4 minutes. Further, the addition of zinc oxide above 0.025% volume fraction in polylactic acid, rise the particle settlement rate freely. Whatever can become to end that 0.025% volume fraction of zinc oxide in polylactic acid mixed thermal energy storage arrangement outcome of maximum thermo physical property and thermal efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1100)

Pages:

89-102

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.Yinping, J.Yi, J.Yi, A simple method, the T–history method, of determining the heat of fusion, specific heat, and thermal conductivity of phase-change materials, Meas.Sci. Technol. 10 (1999) 201–205.

DOI: 10.1088/0957-0233/10/3/015

Google Scholar

[2] J.M. Marın, B.Zalba, L.F. Cabeza, H.Mehling, Determination of enthalpy–temperature curves of phase change materials with the temperature-history method: improvement to temperature-dependent properties, Meas.Sci.Technol.14(2003)184–189.

DOI: 10.1088/0957-0233/14/2/305

Google Scholar

[3] H. Honga, S.K. Kim, Y. Kim, Accuracy improvement of T-history method for measur-ing the heat of fusion of various materials, Int.J.Refrig.27(2004)360–366.

Google Scholar

[4] J.H. Peck, J.Kimb, C.Kang, H.Hong, A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method, Int. J. Refrig. 29(2006)1225–1232.

DOI: 10.1016/j.ijrefrig.2005.12.014

Google Scholar

[5] A.Lazaro, E.Gunther, H.Mehling, S.Hiebler, J.M. Marın, B.Zalba, Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials, Meas.Sci.Technol.17 (2006)2168–2174.

DOI: 10.1088/0957-0233/17/8/016

Google Scholar

[6] I.M. Sutjahja, A.O. Silalahi, N.Sukmawati, D.kurnia, S.Wonorahardjo, Variation of thermo physical parameters of PCMC a Cl2.6H2O with dopant from T-history data analysis, Mater. Res.Exp.5 (2018), 034007.

DOI: 10.1088/2053-1591/aab6f0

Google Scholar

[7] P.Tana, M.Brütting, S.Vidi, H.Ebert, P.Johansson, A.S. Kalagasidis, Characterizing phase change materials using the T-history method: on the factors influencing the accuracy and precision of the enthalpy-temperature curve, Thermo chimica Acta666(2018)212–228.

DOI: 10.1016/j.tca.2018.07.004

Google Scholar

[8] Z. Huang, N. Xie, Z. Luo, X. Gao, X. Fang, Y. Fang, Z. Zhang, Characterization of medium-temperature phase change materials for solar thermal energy storageusing temperature history method, Sol. Energy Mater.Sol. Cells 179(2018)152–160.

DOI: 10.1016/j.solmat.2017.11.006

Google Scholar

[9] F.Agyenim, P.Eames, M.Smyth, A comparison of heat transfer enhancement in a medium-temperature thermal energy storage heat exchanger using fins, Solar En-ergy 83(2009) (2009) 1509–1520.

DOI: 10.1016/j.solener.2009.04.007

Google Scholar

[10] J.Gasia, J.Diriken, M.Bourke, J.V. Bael, L.Cabeza, Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems, Renew.Energy114 (2017)934–944.

DOI: 10.1016/j.renene.2017.07.114

Google Scholar

[11] N.H.S. Tay, M. Liu, M. Belusk, F. Bruno, Review on transportable phase change mate-rial in thermal energy storage systems, Renew. Sustain. Energy Rev. 75 (2017)264–277.

DOI: 10.1016/j.rser.2016.10.069

Google Scholar

[12] S.Harikrishnan, S.I. Hussain, A.Devaraju, P.Sivasamy, S.Kalaiselvam, Improved per-formance of a newly prepared nano-enhanced phase change material for solar en-ergy storage, J.Mech. Sci.Techno l.31 (2017)4903–4910. S.C. Lin, H.H. Al-Kayiem, Evaluation of copper nanoparticles – paraffin wax compo-sitions for solar thermal energy storage, Sol. Energy 132 (2016) 267–278.

DOI: 10.1007/s12206-017-0938-y

Google Scholar

[13] A.Ebrahimi, A.Dadvand, Simulation of melting of a nano-enchanted phase change material in a squa recavity with two heat source-sink pairs, Alex. Eng.J.54 (2015)1003–1017.

DOI: 10.1016/j.aej.2015.09.007

Google Scholar

[14] R.Sharma, P.Ganesan, V.Tyagi, H.Metselaar, S.Sandaran, Thermal properties, and heat storage analysis of palmiticacid-TiO2 composite as a nano-enhanced organic phase change material, Appl. Therm. Eng.99 (2016)1254–1262.

DOI: 10.1016/j.applthermaleng.2016.01.130

Google Scholar

[15] Y.Addad, M.Abutayeh, E.Abu-Nada, Effects of nano fluids on the performance of a PCM-based thermal energy storage system, J.Energy Eng.143 (2017)1–7.

DOI: 10.1061/(asce)ey.1943-7897.0000433

Google Scholar

[16] N. Sahan, H.O. Paksoy, Thermal enhancement of paraffin as a phase change material with nano magnetite, Sol. Energy Mater. Sol. Cells 126(2014)56–61.

DOI: 10.1016/j.solmat.2014.03.018

Google Scholar

[17] R.M. Seaeed, J.P. Schlegel, C. Castano, R. Sawafta, Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets, J. Energy Storage15 (2018)91–102.

DOI: 10.1016/j.est.2017.11.003

Google Scholar

[18] J.L. Zeng, Z. Cao, D.W. Yang, F. Xu, L.X. Sun, X.F. Zhang, L. Zhang, Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM, J.Therm. Anal. Calorim. 95(2009)507–512.

DOI: 10.1007/s10973-008-9275-9

Google Scholar

[19] M.P. Deqiu, S. Kurtulus, U.N. Temel, K. Yapici, Thermal property investigation of Multi-Walled Carbon Nanotubes (MWCNTs) embedded Phase Change Materials(PCMs),15th IEEEI THERM Conference, 2016 ,978-1-4673-8121-5.

DOI: 10.1109/itherm.2016.7517608

Google Scholar

[20] D. Zou, X. Ma, X. Liu, P. Zheng, Y. Hu, Thermal performance enhancement of com-posite phase change materials (PCM) using graphene and carbon nano tubes as ad-ditives for the potential application in lithium-ion power battery, Int.J. Heat MassTransf. 120(2018)33–41.

DOI: 10.1016/j.ijheatmasstransfer.2017.12.024

Google Scholar

[21] C. Yadav, R.R. Sahoo, Exergy, and energy comparison of organic phase change mate-rials based thermal energy storage system integrated with engine exhaust, J. Energy Storage 24 (2019), 100773.

DOI: 10.1016/j.est.2019.100773

Google Scholar

[22] C. Yadav, R.R. Sahoo, Effect of thermal performance on melting and solidification of lauric acid PCM in cylindrical thermal energy storage, J.Phys. Conf. Ser.1240 (2019),012088.

DOI: 10.1088/1742-6596/1240/1/012088

Google Scholar

[23] Patrick Nicholas, A review of phase change materials for vehicle component thermal buffering, Appl. Energy 113 (2014)1525–1561.

DOI: 10.1016/j.apenergy.2013.08.026

Google Scholar

[24] S. Shaikh, K. Lafdi, K. Hallinan, Carbon nano additives to enhance latent energy stor-age of phase change materials, J. Appl. Phys.103 (2008)094302–094306.

DOI: 10.1063/1.2903538

Google Scholar

[25] J.P. Holman, W.J. Gajda, Experimental Methods for Engineers, Mc Graw-Hill, New York, 2001.

Google Scholar

[26] N. Totala, M. Shimpi, N. Shete, V. Bhopate, Natural convection characteristics in a vertical cylinder, Int.J.Eng.Sci.3(2013)27–31.

Google Scholar