[1]
K. Wang, K. Engelbrecht, C.R.H. Bahl, Additive manufactured thermoplastic elastomers for low-stress driven elastocaloric cooling, Appl. Mater. Today. 30 (2023) 101711.
DOI: 10.1016/j.apmt.2022.101711
Google Scholar
[2]
M.M. Gauthier, ed., Engineered Materials Handbook Desk Edition, (1995).
Google Scholar
[3]
C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature. 359 (1992) 710–712.
DOI: 10.1038/359710a0
Google Scholar
[4]
B. Ahn, D. Kim, K. Kim, I.J. Kim, H.J. Kim, C.H. Kang, J.-Y. Lee, W. Kim, Effect of the functional group of silanes on the modification of silica surface and the physical properties of solution styrene-butadiene rubber/silica composites, Compos. Interfaces. 26 (2019) 585–596.
DOI: 10.1080/09276440.2018.1514145
Google Scholar
[5]
R.P. Bagwe, L.R. Hilliard, W. Tan, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding., Langmuir. 22 (2006) 4357–4362.
DOI: 10.1021/la052797j
Google Scholar
[6]
C. Graf, Q. Gao, I. Schütz, C.N. Noufele, W. Ruan, U. Posselt, E. Korotianskiy, D. Nordmeyer, F. Rancan, S. Hadam, A. Vogt, J. Lademann, V. Haucke, E. Rühl, Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells., Langmuir. 28 (2012) 7598–7613.
DOI: 10.1021/la204913t
Google Scholar
[7]
T.N. Tran, A. Nourry, P. Pasetto, G. Brotons, Covalent grafting of functional oligo-isoprenes onto silica-based surfaces to achieve robust elastomeric monolayers, thin films and coatings, Prog. Org. Coat. 159 (2021) 106375.
DOI: 10.1016/j.porgcoat.2021.106375
Google Scholar
[8]
N. Sukhawipat, N. Saetung, J.-F. Pilard, S. Bistac, A. Saetung, Synthesis and characterization of novel natural rubber based cationic waterborne polyurethane: Effect of emulsifier and diol class chain extender, Appl. Polym. Sci. 135 (2018).
DOI: 10.1002/app.45715
Google Scholar
[9]
N. Sukhawipat, N. Saetung, A. Saetung, Synthesis of novel cationic waterborne polyurethane from natural rubber and its properties testing, Key Eng. Mater. 705 (2016) 19-23.
DOI: 10.4028/www.scientific.net/kem.705.19
Google Scholar
[10]
N. Sukhawipat, W. Raksanak, E. Kalkornsurapranee, A. Saetung, N. Saetung, A new hybrid waterborne polyurethane coating synthesized from natural rubber and rubber seed oil with grafted acrylate, Prog. Org. Coat. 141 (2020).
DOI: 10.1016/j.porgcoat.2020.105554
Google Scholar
[11]
A. Saetung, A. Rungvichaniwat, I. Campistron, P. Klinpituksa, A. Laguerre, P. Phinyocheep, J.F. Pilard, Controlled degradation of natural rubber and modification of the obtained telechelic oligoisoprenes: Preliminary study of their potentiality as polyurethane foam precursors, J. Appl. Polym. Sci. 117 (2010) 1279–1289.
DOI: 10.1002/app.31907
Google Scholar
[12]
F. Wu, X. Lan, D. Ji, Z. Liu, W. Yang, M. Yang, Grafting polymerization of polylactic acid on the surface of nano-SiO2 and properties of PLA/PLA-grafted-SiO2 nanocomposites, J. Appl. Polym. Sci. 129 (2013) 3019–3027.
DOI: 10.1002/app.38585
Google Scholar