Quench and Bainite (Q&B) Thermal Cycle as an Alternative to Standard Quench and Partitioning (Q&P) Annealing to Produce AHSS

Article Preview

Abstract:

In this work a new kind of thermal treatment, called Quenching and Bainite (Q&B), was proposed and studied. A rather standard Fe-C-Mn-Si composition was used for this study. Annealing trials were performed using a combination of salt pots on relatively big samples allowing to perform the standard tensile and hole expansion tests. The obtained results were compared with the properties obtained using more known Q&P annealing. Generated microstructures were also compared. Characterization was done using optical and Scanning Electron Microscopy as well as magnetization saturation method for measuring retained austenite fractions. The Q&B heat treatment provides an alternative way to obtain 3G AHSS with promising strength-ductility-formability compromise.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1105)

Pages:

185-190

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Grajcar, R.Kuziak, W.Zalecki, Archives of Civil and Mech. Eng. 12, 2012, 334 - 341.

Google Scholar

[2] J.C. Hell, M. Dehmas, S. Allain, J.M. Prado, A. Hazotte, J.P. Chateau, ISIJ Int. 51(10), 2011, 1724-1732.

DOI: 10.2355/isijinternational.51.1724

Google Scholar

[3] J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51(9), 2003, 2611–2622.

DOI: 10.1016/s1359-6454(03)00059-4

Google Scholar

[4] A. Arlazarov, O. Bouaziz, J.P. Masse, F. Kegel, Mater. Sci. Eng. A 620 (2015) 293-300.

Google Scholar

[5] K. Sugimoto, A. Kanda, R. Kikuchi, S. Hashimoto, T. Kashima, S. Ikeda, ISIJ Int. 42 (8), 2002, 910–915.

Google Scholar

[6] M. Mukherjee, O. N. Mohanty, S. Hashimoto, T. Hojo, K. Sugimoto, ISIJ Int. 46(2), 2006, 316–324.

Google Scholar

[7] A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, P. Barges, Mater. Sci. Eng. A 542, 2012, 31-39.

DOI: 10.1016/j.msea.2012.02.024

Google Scholar

[8] S.M.C. Van Bohemen, M.J. Santofimia, J. Sietsma, Scripta Materialia 58, 2008, 488–491.

DOI: 10.1016/j.scriptamat.2007.10.045

Google Scholar

[9] A. Arlazarov, E. Soares Barreto, N. Kabou, D. Huin, Metall. Mater. Trans. A 51(12), 2020, 6159-6166.

DOI: 10.1007/s11661-020-06022-6

Google Scholar

[10] D.P. Koistinen, R.E. Marburger, Acta Metall. 7(1), 1959, 59-60.

Google Scholar

[11] S.M.C. Van Bohemen, J. Sietsma, Metall. Mater. Trans. A. 40(5), 2009, 1059-1068.

Google Scholar

[12] S. Radcliffe, E. Rollason, J. Iron Steel Inst. 191, 1959, 56-65.

Google Scholar