[1]
Z. Ling, T. Chen, L. Kong, M. Wang, H. Pan, and M. Lei, Liquid metal embrittlement cracking during resistance spot welding of galvanized Q&P980 steel, Metallurgical and Materials Transactions A, 50 (2019) 5128–5142.
DOI: 10.1007/s11661-019-05388-6
Google Scholar
[2]
C. Beal, Ph.D. Thesis, Diss. Lyon, INSA, 2011.
Google Scholar
[3]
R. Frappier, P. Paillard, R. Le Gall, and T. Dupuy, Embrittlement of steels by liquid zinc: crack propagation after grain boundary wetting, Advanced Materials Research, 922 (2014) 161-166.
DOI: 10.4028/www.scientific.net/amr.922.161
Google Scholar
[4]
Z. Ling, M. Wang, and L. Kong, Liquid metal embrittlement of galvanized steels during industrial processing: a review, Transactions on Intelligent Welding Manufacturing, 1 (2017) 25-42.
DOI: 10.1007/978-981-10-8330-3_2
Google Scholar
[5]
S.P. Murugan, J.B. Jeon, C. Ji, and Y.D Park, Liquid zinc penetration induced intergranular brittle cracking in resistance spot welding of galvannealed advanced high strength steel, Welding in the World, 64 (2020) 1957-1969.
DOI: 10.1007/s40194-020-00975-3
Google Scholar
[6]
S.S.S. Guraja, S. Patra, K.S. Arora, and N. Kumar, Liquid metal embrittlement (LME) of high-strength steels during spot welding: a review, Transactions of the Indian Institute of Metals, 75 (2022) 1695-1709.
DOI: 10.1007/s12666-022-02569-7
Google Scholar
[7]
A.G. Kalashami, G. DiGiovanni, M.H. Razmpoosh, F. Goodwin, N.Y. Zhou, The effect of silicon content on liquid-metal-embrittlement susceptibility in resistance spot welding of galvanized dual-phase steel, Journal of Manufacturing Processes, 57 (2020) 370-379.
DOI: 10.1016/j.jmapro.2020.07.008
Google Scholar
[8]
D. Bhattacharya, Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels, Materials Science and Technology, 34 (2018) 1809-1829.
DOI: 10.1080/02670836.2018.1461595
Google Scholar
[9]
D. Bhattacharya, L. Cho, E. Vander Aa, H. Ghassemi-Armaki, A. Pichler, K.O. Findley, and J.G. Speer, Quantitative assessment of the characteristics of liquid metal embrittlement during resistance spot welding of Zn-coated high strength steels, Sheet Metal Welding Conference XVII, Detroit, Michigan, USA, 2018.
DOI: 10.1016/j.msea.2021.141569
Google Scholar
[10]
D. Bhattacharya, L. Cho, D. Marshall, M. Walker, E. van der Aa, A. Pichler, H. Ghassemi-Armaki, K.O. Findley, and J.G. Speer, Liquid metal embrittlement susceptibility of two Zn-coated advanced high strength steels of similar strengths, Materials Science and Engineering: A, 823 (2021) 141569.
DOI: 10.1016/j.msea.2021.141569
Google Scholar
[11]
D. Bhattacharya, L. Cho, E. van der Aa, A. Pichler, N. Pottore, H. Ghassemi-Armaki, K.O. Findley, and J.G. Speer, Influence of the starting microstructure of an advanced high strength steel on the characteristics of Zn-assisted liquid metal embrittlement, Materials Science and Engineering: A, 804 (2021) 140391.
DOI: 10.1016/j.msea.2020.140391
Google Scholar
[12]
D. Bhattacharya, D. Smith, L. Cho, E. van der Aa, A. Pichler, N. Pottore, H. Ghassemi-Armaki, K.O. Findley, and J.G. Speer, Alloying influences on Zn-assisted liquid metal embrittlement susceptibility of third generation advanced high strength steels, Materials and Design, 224 (2022) 111356.
DOI: 10.2139/ssrn.4123781
Google Scholar
[13]
Q. Lu, Q. Lai, Z. Chai, X. Wei, X. Xiong, H. Yi, and J. Wang, Revolutionizing car body manufacturing using a unified steel metallurgy concept, Science Advances, 7 (2021).
DOI: 10.1126/sciadv.abk0176
Google Scholar
[14]
B. El-Sari, M. Biegler, and M. Rethmeier, Investigation of the LME susceptibility of dual phase steel with different zinc coatings, Metals, 13 (2023) 890.
DOI: 10.3390/met13050890
Google Scholar
[15]
R. Ashiri, M.A. Haque, C.W. Ji, H.R. Salimijazi, and Y.D. Park, Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels, Scripta Materialia, 109 (2015) 6-10.
DOI: 10.1016/j.scriptamat.2015.07.006
Google Scholar
[16]
D. Kim, S.H. Hong, J.H. Kang, Y.R. Im, and S.J. Kim, Effect of Zn-coating process on liquid metal embrittlement of TRIP steel, Metals and Materials International, 29 (2023) 135-140.
DOI: 10.1007/s12540-022-01214-8
Google Scholar
[17]
D. Bhattacharya, Ph.D. Thesis, Colorado School of Mines, 2022.
Google Scholar