Design and Properties of Hot Rolled Tough Carbide Free Bainitic Steels

Article Preview

Abstract:

Carbide free bainitic microstructures of steels in hot rolled condition have high potential for automotive and structural applications, where both high elongation and toughness at a high strength level are needed. However, achieving a combination of these properties remains a challenge due to difficulties in ensuring a high stability of retained austenite while maintaining industrial processability. Therefore, an attempt has been made in this work to achieve combined high toughness and high elongation in hot rolled carbide free bainitic steels.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1105)

Pages:

219-224

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. De Moor, Advanced high-strength steels for automotive applications, in: R. Rana (Ed.), High-Performance Ferrous Alloys, Springer, New York, 2021, pp.113-151.

DOI: 10.1007/978-3-030-53825-5_4

Google Scholar

[2] H. K. D. H. Bhadeshia, Bainite in Steels, third ed., CRC Press, Boca Raton, 2015.

Google Scholar

[3] R. Rana, S. Chen, A. Haldar, S. Das, Mechanical properties of a bainitic steel producible by hot rolling, Arch. Metall. Mater. 62 (2017) 2331-2338.

DOI: 10.1515/amm-2017-0342

Google Scholar

[4] S. Chen, R. Rana, B. Xiao, A. Haldar, The effects of hot deformation of austenite on the bainitic transformation in a Fe-C-Mn-Si-Cr steel, Mater. Sci. Forum 941 (2018) 486-491.

DOI: 10.4028/www.scientific.net/msf.941.486

Google Scholar

[5] P. Payson, C. H. Savage, Martensite reactions in alloy steels, Trans. Am. Soc. Mater. 33 (1944) 261-280.

Google Scholar

[6] Z. Zhao, C. Liu, Y. Liu, D. O. Northwood, A new empirical formula for the bainite upper temperature limit of steel. J. Mater. Sci. 36 (2001) 5045-5056.

Google Scholar

[7] H. K. D. H. Bhadeshia, D. V. Edmonds, Bainite in silicon steels: new composition–property approach Part 1, Met. Sci. 17 (1983) 411-419.

DOI: 10.1179/030634583790420600

Google Scholar

[8] D. P. Koistinen, R. E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall. 7 (1959) 59-60.

DOI: 10.1016/0001-6160(59)90170-1

Google Scholar

[9] A. Eres-Castellanos, I. Toda-Caraballo, A. Latz, F. G. Caballero, C. Garcia-Mateo, An integrated-model for austenite yield strength considering the influence of temperature and strain rate in lean steels, Mater. Des. 188 (2020) 108435.

DOI: 10.1016/j.matdes.2019.108435

Google Scholar

[10] Z. Yang, C. Chu, F. Jiang, Y. Qin, X. Long, S. Wang, D. Chen, F. Zhang, Accelerating nano-bainite transformation based on a new constructed microstructural predicting model, Mater. Sci. Eng. A 748 (2019) 16-20.

DOI: 10.1016/j.msea.2019.01.061

Google Scholar

[11] V. V. Zabil'skii, Temper embrittlement of structural alloy steels (review), Met. Sci. Heat Treat. 29 (1987) 32-42.

DOI: 10.1007/bf00735489

Google Scholar

[12] B. N. P. Babu, M. S. Bhat, E. R. Parker, V. F. Zackay, A rapid magnetometric technique to plot isothermal transformation diagrams, Metall. Trans. A 7A (1976) 17-22.

DOI: 10.1007/bf02644034

Google Scholar

[13] S. Chen, R. Rana and C. Lahaye, Study of TRIP-aided bainitic ferritic steels produced by hot press forming, Metall. Mater. Trans. A 45 (2014) 2209-2218.

DOI: 10.1007/s11661-013-2163-3

Google Scholar