Synthesis and Characterization of Cellulose Acetate Membrane from Corn (Zea mays) Husk as Lithium-Ion Battery Electrolyte Membrane

Article Preview

Abstract:

Rechargeable lithium-ion batteries (LIBs) have gained popularity and the attention of numerous researchers in recent times because of their benefits. The separator membrane is one of the most important parts of the LIB. Separator membranes are made of polymeric materials, one of which is cellulose acetate (CA). In this study, we synthesize CA from corn husk. There are 2 methodological ways in this study, namely the synthesis of CA which consists of delignification and acetylation, and fabrication of PVDF/ CA/ Nanoclay electrolyte membrane with variation of CA PVDF (0%:100, 10%: 90%, 20%: 80%, 30%: 70%, 50%: 50%). The synthesis of CA from corn husk exhibits XRD results which were comparable to the peak of commercial CA. Meanwhile, the PVDF/ CA-Nanoclay-based separator membrane with the composition of 50% PVDF and 50% CA had the best characterization results with an electrolyte uptake value of 139.649% and a porosity value of 79.11%. Based on the attained results, the CA extracted from corn husk in this study is applicable to use for the fabrication of electrolyte membrane.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1111)

Pages:

57-65

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, and Y. Liu, "Energy storage systems for advanced power applications," Proc. IEEE, vol. 89, no. 12, p.1744–1756, 2001.

DOI: 10.1109/5.975900

Google Scholar

[2] A. M. Divakaran et al., "Rational design on materials for developing next generation lithium-ion secondary battery," Prog. Solid State Chem., vol. 62, p.100298, 2021.

DOI: 10.1016/j.progsolidstchem.2020.100298

Google Scholar

[3] Q.-Y. Wu, H.-Q. Liang, L. Gu, Y. Yu, Y.-Q. Huang, and Z.-K. Xu, "PVDF/PAN blend separators via thermally induced phase separation for lithium ion batteries," Polymer (Guildf)., vol. 107, p.54–60, 2016.

DOI: 10.1016/j.polymer.2016.11.008

Google Scholar

[4] W. Chen, X. Wang, J. Liang, Y. Chen, W. Ma, and S. Zhang, "A High Performance Polyacrylonitrile Composite Separator with Cellulose Acetate and Nano-Hydroxyapatite for Lithium-Ion Batteries," Membranes (Basel)., vol. 12, no. 2, p.124, 2022.

DOI: 10.3390/membranes12020124

Google Scholar

[5] H. Li, L. Li, S. Zheng, X. Wang, and Z. Ma, "High temperature resistant separator of PVDF-HFP/DBP/C-TiO2 for lithium-ion batteries," Materials (Basel)., vol. 12, no. 17, p.2813, 2019.

DOI: 10.3390/ma12172813

Google Scholar

[6] W. Chen et al., "Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery," Carbohydr. Polym., vol. 147, p.517–524, 2016.

DOI: 10.1016/j.carbpol.2016.04.046

Google Scholar

[7] H. Nakajima, P. Dijkstra, and K. Loos, "The recent developments in biobased polymers toward general and engineering applications: Polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed," Polymers (Basel)., vol. 9, no. 10, p.523, 2017.

DOI: 10.3390/polym9100523

Google Scholar

[8] M. Oprea and S. I. Voicu, "Recent advances in composites based on cellulose derivatives for biomedical applications," Carbohydr. Polym., vol. 247, p.116683, 2020.

DOI: 10.1016/j.carbpol.2020.116683

Google Scholar

[9] Y. Wang, B. Li, J. Ji, A. Eyler, and W. Zhong, "A Gum‐Like Electrolyte: Safety of a Solid, Performance of a Liquid," Adv. Energy Mater., vol. 3, no. 12, p.1557–1562, 2013.

DOI: 10.1002/aenm.201300495

Google Scholar

[10] C. A. de Carvalho Mendes, N. M. S. Ferreira, C. R. G. Furtado, and A. M. F. de Sousa, "Isolation and characterization of nanocrystalline cellulose from corn husk," Mater. Lett., vol. 148, p.26–29, 2015.

DOI: 10.1016/j.matlet.2015.02.047

Google Scholar

[11] R. G. Candido, G. G. Godoy, and A. R. Goncalves, "Characterization and application of cellulose acetate synthesized from sugarcane bagasse," Carbohydr. Polym., vol. 167, p.280–289, 2017.

DOI: 10.1016/j.carbpol.2017.03.057

Google Scholar

[12] N. R. L. Pereira et al., "Bio-packaging based on cellulose acetate from banana pseudostem and containing Butia catarinensis extracts," Int. J. Biol. Macromol., vol. 194, p.32–41, 2022.

DOI: 10.1016/j.ijbiomac.2021.11.179

Google Scholar

[13] D. Araujo, M. C. R. Castro, A. Figueiredo, M. Vilarinho, and A. Machado, "Green synthesis of cellulose acetate from corncob: Physicochemical properties and assessment of environmental impacts," J. Clean. Prod., vol. 260, p.120865, 2020.

DOI: 10.1016/j.jclepro.2020.120865

Google Scholar

[14] A. Dahliyanti, D. A. Yunitama, I. M. Rofiqoh, and M. Mustapha, "Synthesis and characterization of silica xerogel from corn husk waste as cationic dyes adsorbent," F1000Research, vol. 11, no. 305, p.305, 2022.

DOI: 10.12688/f1000research.75979.1

Google Scholar

[15] J. Shi, Y. Yang, and H. Shao, "Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries," J. Memb. Sci., vol. 547, p.1–10, 2018.

DOI: 10.1016/j.memsci.2017.10.033

Google Scholar

[16] J. Gou, W. Liu, and A. Tang, "A renewable gel polymer electrolyte based on the different sized carboxylated cellulose with satisfactory comprehensive performance for rechargeable lithium ion battery," Polymer (Guildf)., vol. 208, p.122943, 2020.

DOI: 10.1016/j.polymer.2020.122943

Google Scholar

[17] Y. H. Liao et al., "Fumed silica-doped poly (butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery," J. Memb. Sci., vol. 352, no. 1–2, p.95–99, 2010.

DOI: 10.1016/j.memsci.2010.01.064

Google Scholar

[18] D. Boriboon, T. Vongsetskul, P. Limthongkul, W. Kobsiriphat, and P. Tammawat, "Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries," Carbohydr. Polym., vol. 189, p.145–151, 2018.

DOI: 10.1016/j.carbpol.2018.01.077

Google Scholar

[19] X. Zuo et al., "Self-supporting ethyl cellulose/poly(vinylidene fluoride) blended gel polymer electrolyte for 5 V high-voltage lithium-ion batteries," Electrochim. Acta, 2018.

DOI: 10.1016/j.electacta.2018.03.195

Google Scholar

[20] P. Senthil Kumar, A. Sakunthala, M. V Reddy, and M. Prabu, "Structural, morphological, electrical and electrochemical study on plasticized PVdF-HFP/PEMA blended polymer electrolyte for lithium polymer battery application," Solid State Ionics, vol. 319, p.256–265, 2018.

DOI: 10.1016/j.ssi.2018.02.022

Google Scholar

[21] L. Li, H. Li, Y. Wang, S. Zheng, Y. Zou, and Z. Ma, "Poly(vinylidenefluoride-hexafluoropropylene)/cellulose/carboxylic TiO2 composite separator with high temperature resistance for lithium-ion batteries," Ionics (Kiel)., 2020.

DOI: 10.1007/s11581-020-03587-5

Google Scholar

[22] E. R. Dyartanti, A. Jumari, T. Paramitha, A. Y. M. Putri, and N. Sunaryati, "Synthesis and Characterization of Cellulose Acetate Membrane from Cigarette Butts as Gel Polymer Electrolytes for Lithium-Ion Battery," Solid State Phenom., vol. 334, p.182–191, 2022.

DOI: 10.4028/p-6v0288

Google Scholar

[23] Y. Zhu et al., "Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes," Compos. Part B Eng., vol. 112, p.31–37, 2017.

DOI: 10.1016/j.compositesb.2016.12.025

Google Scholar

[24] M. V Bhute and S. B. Kondawar, "Electrospun poly (vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium ion battery," Solid State Ionics, vol. 333, p.38–44, 2019.

DOI: 10.1016/j.ssi.2019.01.019

Google Scholar

[25] J. Cui, J. Liu, C. He, J. Li, and X. Wu, "Composite of polyvinylidene fluoride–cellulose acetate with Al(OH)3 as a separator for high-performance lithium ion battery," J. Memb. Sci., vol. 541, no. July, p.661–667, Nov. 2017.

DOI: 10.1016/j.memsci.2017.07.048

Google Scholar

[26] P. Raghavan et al., "Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers," Electrochim. Acta, vol. 54, no. 2, p.228–234, Dec. 2008.

DOI: 10.1016/j.electacta.2008.08.007

Google Scholar

[27] R. Prasanth, N. Shubha, H. H. Hng, and M. Srinivasan, "Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries," Eur. Polym. J., vol. 49, no. 2, p.307–318, Feb. 2013.

DOI: 10.1016/j.eurpolymj.2012.10.033

Google Scholar

[28] J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, "Characterization and Properties of P(VdF-HFP)-Based Fibrous Polymer Electrolyte Membrane Prepared by Electrospinning," J. Electrochem. Soc., vol. 152, no. 2, p. A295, 2005.

DOI: 10.1149/1.1839531

Google Scholar

[29] W. Chen, Y. Liu, Y. Ma, and W. Yang, "Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate)," J. Power Sources, vol. 273, p.1127–1135, 2015.

DOI: 10.1016/j.jpowsour.2014.10.026

Google Scholar

[30] S. Jamalpour, M. Ghahramani, S. R. Ghaffarian, and M. Javanbakht, "Improved performance of lithium ion battery by the incorporation of novel synthesized organic-inorganic hybrid nanoparticles SiO2-poly (methyl methacrylate-co-ureidopyrimidinone) in gel polymer electrolyte based on poly (vinylidene fluoride)," Polymer (Guildf)., vol. 228, p.123924, 2021.

DOI: 10.1016/j.polymer.2021.123924

Google Scholar

[31] W. Kang et al., "Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries," J. Solid State Electrochem., vol. 20, no. 10, p.2791–2803, 2016.

DOI: 10.1007/s10008-016-3271-y

Google Scholar

[32] E. Dyartanti, A. Purwanto, I. Widiasa, and H. Susanto, "Ionic conductivity and cycling stability improvement of PVdF/nano-clay using PVP as polymer electrolyte membranes for LiFePO4 batteries," Membranes (Basel)., vol. 8, no. 3, p.36, 2018.

DOI: 10.3390/membranes8030036

Google Scholar

[33] K. Bicy et al., "Highly lithium ion conductive, Al 2 O 3 decorated electrospun P (VDF-TrFE) membranes for lithium ion battery separators," New J. Chem., vol. 42, no. 24, p.19505–19520, 2018.

DOI: 10.1039/c8nj01907j

Google Scholar

[34] L. Jabbour et al., "Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries," Compos. Sci. Technol., vol. 87, p.232–239, 2013.

DOI: 10.1016/j.compscitech.2013.07.029

Google Scholar

[35] T. Yvonne, C. Zhang, C. Zhang, E. Omollo, and S. Ncube, "Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator," Cellulose, vol. 21, no. 4, p.2811–2818, 2014.

DOI: 10.1007/s10570-014-0296-1

Google Scholar

[36] L. Zhang, X. Li, M. Yang, and W. Chen, "High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective," Energy Storage Mater., vol. 41, p.522–545, 2021.

DOI: 10.1016/j.ensm.2021.06.033

Google Scholar

[37] J. Hu, Y. Liu, M. Zhang, J. He, and P. Ni, "A separator based on cross-linked nano-SiO2 and cellulose acetate for lithium-ion batteries," Electrochim. Acta, vol. 334, p.135585, 2020.

DOI: 10.1016/j.electacta.2019.135585

Google Scholar