Microstructural and Optical Properties of Green-Synthesized rGO Utilizing Amaranthus viridis Extract

Article Preview

Abstract:

Research of green-synthesized reduced graphene oxide (rGO) using Amaranthus viridis (AV) extract has been successfully conducted. The modified Hummers method was used to synthesize graphene oxide (GO), then reduced using hydrazine hydrate and AV extract to obtain rGO. The X-ray diffraction results illustrate the change in crystalline structure from graphite to rGO. Peaks at 2θ angles of 26.5°, 9.1°, and 24.1° indicate the characteristics of graphite, GO, and rGO, respectively. The transmission electron microscopy image shows the formation of 2D nanosheet morphology with slight wrinkles. The fourier transform infrared spectrum represents six peaks of identical functional groups in the graphene-based nanomaterials. Meanwhile, GO has two additional oxygen groups (carboxyl and hydroxyl) at wavenumbers of 1720 cm-1 and 1217 cm-1, respectively. Furthermore, the UV-Vis analysis data shows the typical absorption of GO at 232 nm and 301 nm, while at 266 nm and 278 nm, it belongs to graphite and rGO. The bandgap energy of nanomaterials is 0–3.58 eV, which describes the difference in their optical properties. These promising results reveal the potential of AV as a green-reducing agent to minimize the use of chemicals in the synthesis of rGO for various applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1113)

Pages:

3-8

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Chen, J. J Bailey, L. Britnell, M. Perez-Pege, M. Sahoo, Z. Zhang, A. Strudwick, J. Hack, Z. Guo, Z. Ji, P. Martin, D. J. L. Brett, P. R. Shearing, and S. M. Holmes: Nano Energy Vol. 93 (2021), p.106829.

DOI: 10.1016/j.nanoen.2021.106829

Google Scholar

[2] K. Cheng, S. Wallaert, H. Ardebili, and A. Karim: Carbon Vol. 194 (2022), p.81–103

Google Scholar

[3] S. Verma, U. Dwivedi, K. Chaturvedi, N. Kumari, M. Dhangar, S. A. R. Hashmi, R. Singhal, and A. K. Srivastava: Synth. Met Vol. 287 (2022), p.117095

DOI: 10.1016/j.synthmet.2022.117095

Google Scholar

[4] Z. Huang, H. Liu, R. Hu, H. Qiao, H. Wang, Y. Liu, X. Qi, and H. Zhang: Nano Today Vol. 35 (2020), p.100906

Google Scholar

[5] M. P. Lavin-Lopez, A. Paton-Carrero, L. Sanchez-Silva, J. L. Valverde, and A. Romero: Adv. Powder Technol Vol. 28 (2017), p.3195–3203

DOI: 10.1016/j.apt.2017.09.032

Google Scholar

[6] J. Wu, H. Lin, D. J. Moss, K. P. Loh, and B. Jia: Nat. Rev. Chem Vol. 7 (2023), p.162–183

Google Scholar

[7] J. Singh, N. Jindal, V. Kumar, and K. Singh: Chem. Phys. Impact Vol. 6 (2023), p.100185

Google Scholar

[8] N. Adrianto, N. I. Istiqomah, A. M. Panre, and E. Suharyadi: Solid State Phenom Vol. 332 (2022), p.85–90

Google Scholar

[9] X. Weng, J. Wu, L. Ma, G. Owens, and Z. Chen: Chem. Eng. J Vol. 359 (2019), p.976–981

Google Scholar

[10] K. Priyadharshini, S. Rathinavel, E. Velumani, and A. Manikandan: Mater. Today Proc Vol. 80 (2023), p.1341–1347

DOI: 10.1016/j.matpr.2023.01.085

Google Scholar

[11] J. Khan and M. Jaafar: J. Mater. Sci Vol. 56 (2021), p.18477–18492

Google Scholar

[12] G. Bhattacharya, S. Sas, S. Wadhwa, A. Mathur, J. McLaughlin, and S. S. Roy: RSC Adv Vol. 7 (2017), p.26680–26688

DOI: 10.1039/c7ra02828h

Google Scholar

[13] M. Mahmudzadeh, H. Yari, B. Ramezanzadeh, and M. Mahdavian: J. Hazard. Mater Vol. 371 (2019), p.609–624

Google Scholar

[14] S. Azhar, K. S. Ahmad, I. Abrahams, S. B. Jaffri, T. Ingsel, R. K. Gupta, and D. Ali: Ionics Vol. 29 (2023), p.2485–2500

DOI: 10.1007/s11581-023-05002-1

Google Scholar

[15] N. M. S. Hidayah, W. W. Liu, C. W. Lai, N. Z. Noriman, C. S. Khe, U. Hashim, and H. C. Lee: AIP Conf. Proc Vol. 1892 (2017), p.150002

Google Scholar

[16] S. Tajik, H. Beitollahi, S. A. Ahmadi, M. B. Askari, and A. Di Bartolomeo: Nanomaterials Vol. 11 (2021), p.3208

DOI: 10.3390/nano11123208

Google Scholar

[17] N. S. Suhaimin, M. F. R. Hanifah, J. W. Jusin, J. Jaafar, M. Aziz, A. F. Ismail, M. H. D. Othman, M. A. Rahman, F. Aziz, N. Yusof, and R. Mohamud: Phys. E Low-Dimensional Syst. Nanostructures Vol. 131 (2021), p.114727

DOI: 10.1016/j.physe.2021.114727

Google Scholar

[18] F. W. Low, C. W. Lai, and S. B. Abd Hamid: Ceram. Int Vol. 41 (2015), p.5798–5806

Google Scholar

[19] A. Sharma, G. Erdenedelger, H. Mo Jeong, and B. K. Lee: J. Environ. Chem. Eng Vol. 8 (2020), p.103749

Google Scholar

[20] Y. Han, Z. Xu, and C. Gao: Adv. Funct. Mater Vol. 23 (2013), p.3693–3700

Google Scholar

[21] A. Hadi, J. Karimi-Sabet, S. M. A. Moosavian, and S. Ghorbanian: J. Supercrit. Fluids Vol. 107 (2016), p.92–105

Google Scholar

[22] E. H. Sujiono, Zurnansyah, D. Zabrian, M. Y. Dahlan, B. D. Amin, Samnur, and J. Agus Heliyon Vol. 6 (2020), p. e04568

DOI: 10.1016/j.heliyon.2020.e04568

Google Scholar

[23] R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, and M. A. Atieh: Ceram. Int Vol. 45 (2019), p.14439–14448

DOI: 10.1016/j.ceramint.2019.04.165

Google Scholar

[24] N. Azimi, A. Gandomkar, and M. Sharif: Polym. Bull Vol. 80 (2022), p.6455–6469

Google Scholar

[25] M. Coros, F. Pogacean, A. Turza, M. Dan, C. B. Grosan, I. O. Pana, S. Pruneanu: Phys. E Low-Dimensional Syst. Nanostructures Vol. 119 (2020), p.113971

DOI: 10.1016/j.physe.2020.113971

Google Scholar

[26] I. V. Popov, A. L. Görne, A. L. Tchougréeff, and R. Dronskowski: Phys. Chem. Chem. Phys Vol. 21 (2019), p.10961–10969

DOI: 10.1039/c8cp07592a

Google Scholar

[27] N. Sharma, M. Arif, S. Monga, M. Shkir, Y. K. Mishra, and A. Singh: Appl. Surf. Sci Vol. 513 (2019), p.145396

Google Scholar