Application of Green Synthesized Silver Nanoparticles for Dye Wastewater Treatment

Article Preview

Abstract:

A facile one-pot synthesis of silver nanoparticles (AgNPs) was achieved using the ethanolic extract of Cavendish banana florets as source of reducing agents for the conversion of Ag+ to Ag. The appearance of surface plasmon resonance peak between 410–435 nm in the UV Vis spectra confirmed the formation of AgNPs. The effects of different reaction conditions on the size and concentration of AgNPs were evaluated. The optimum conditions identified were pH 7 at 80 °C. Transmission electron microscopy (TEM) revealed spherical AgNPs with a mean particle size of 13.55 nm. On the other hand, energy-dispersive X-ray (EDX) analysis confirmed the presence of silver (Ag) as the bulk element (87.25%). Other elements such as carbon (C) and oxygen (O) are attributed to the capping agents of AgNPs which agrees with the results in the Fourier-transform infrared spectroscopy (FTIR) analysis. The optimized AgNPs were used for dye degradation using methyl orange (MO) as the model dye under acidified conditions. The maximum MO dye degradation of 96.07% and 77.32% at pH 1.5 and 2 were achieved after 10 min and 1320 min, respectively. This highlights the potential use of green-synthesized AgNPs for dye wastewater treatment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1113)

Pages:

27-33

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Bushaibah, A. Al-Haddad, M. Khajah, F. Dashti and E. Ibrahim: Int. J. Environ. Sci. Dev. Vol. 14 (2023), p.58

Google Scholar

[2] F. Hajrizi and M. Aliu: Int. J. Environ. Sci. Dev. Vol. 13 (2022), p.200

Google Scholar

[3] H. M. Mehwish, M.S.R. Rajoka, Y. Xiong, H. Cai, R.M. Aadil, Q. Mahmood, Z. He and Q. Zhu: J. Environ. Chem. Eng. Vol. 9 (2021), p.1

Google Scholar

[4] D. Gola, A. Kriti, M. Bajpai, A. Singh, A. Arya, N. Chauhan, S.K. Srivastava, P.K. Tyagi and Y. Agrawal: Pharmacol. Res. Vol. 1 (2020), p.1

Google Scholar

[5] M. Al Kausor and D. Chakrabortty: Inorg. Chem. Commun. Vol. 129 (2021), p.1

Google Scholar

[6] S. Sankar Sana, R. Haldhar, J. Parameswaranpillai, M. Chavali and S.C. Kim: Clean Mater. Vol. 6 (2022), p.1

Google Scholar

[7] P. Kumar, J. Dixit, A.K. Singh, V.D. Rajput, P. Verma, K.N. Tiwari, S.K. Mishra, T. Minkina and S. Mandzhieva: Nanomat. Vol. 12 (2022), p.1

Google Scholar

[8] A.A. Fairuzi, N.N. Bonnia, R.M. Akhir, M.A Abrani and H.M. Akil: IOP Conf. Ser. Earth Environ. Sci. Vol 105 (2018), p.1

DOI: 10.1088/1755-1315/105/1/012018

Google Scholar

[9] H.M.M. Ibrahim: J. Radiat. Res. Appl. Sci. Vol. 8 (2015), p.265

Google Scholar

[10] S. Soman and J.G. Ray: Photobiol. B Biol. Vol 163 (2016), p.391

Google Scholar

[11] F. Erci, R. Cakir-Koc and I. Isildak: Artif. Cells Nanomedicine Biotechnol. Vol. 46 (2018), p.150

Google Scholar

[12] M.M. Schmidt, R.C. Prestes, E.H. Kubota, G. Scapin and M.A. Mazutti: CYTA-J. Food Vol. 13 (2015), p.498

Google Scholar

[13] A. Benabdallah, C. Rahmoune, M. Boumendjel, O. Aissi and C. Messaoud: Asian Pac. J. Trop. Biomed. Vol. 6 (2016), p.760

Google Scholar

[14] M.M. Amargo, E.A. Bucoya, E.O. Fundador and N.G. Fundador: Nanoscience & Nanotechnology Asia Vol. 13 (2023), p.2

DOI: 10.2174/2210681213666230416150715

Google Scholar

[15] J.J. Bhaskar, S. Mahadevamma, N.D. Chilkunda and P.V. Salimath: J. Agric. Food Chem. Vol. 60 (2012), p.427

Google Scholar

[16] S. Ramires-Bolanos, J. Perez-Jimenez, S. Diaz and L. Robaina: J. Food Sci. Technol. Vol. 56 (2021), p.5601

Google Scholar

[17] S.M. Bhagyaraj and O.S. Oluwafemi: Synthesis of Inorganic Materials (2018), p.1

Google Scholar

[18] M. Asimuddin, M. Rafi, S. Farooq, M. Rafiq, H. Siddiqui, A. Alwarthan, K. Jamil and M. Khan: Journal of King Saud University – Science Vol. 32 (2020), p.648

DOI: 10.1016/j.jksus.2018.09.014

Google Scholar

[19] B. Calderon-Jimenez, M.E. Johnson, A.R. Montoro Bustos, K.E. Murphy, M.R. Winchester and J.R.V. Baudrit: Front. Chem. Vol. 5 (2017), p.1

Google Scholar

[20] C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai and S.L. Rokhum: RSC Adv. Vol. 11 (2021), p.2804

DOI: 10.1039/d0ra09941d

Google Scholar

[21] J.Y. Song and B.S. Kim: Bioprocess Biosyst. Eng. Vol. 32 (2009), p.79

Google Scholar

[22] F. Ali, U. Younas, A. Nazir, F. Hassan, M. Iqbal, B. Hamza, S. Mukhtar, A. Khalid and A. Ishfaq: J. Saudi Chem. Soc. Vol. 26 (2022), p.101558

DOI: 10.1016/j.jscs.2022.101558

Google Scholar

[23] A.G. Femi-Adepoju, A.O. Dada, K.O. Otun, A.O. Adepoju and O.P. Fatoba: Heliyon Vol. 5 (2019), p.1543

DOI: 10.1016/j.heliyon.2019.e01543

Google Scholar

[24] Z. Abbasi, S. Feizi, E. Taghipour and P. Ghadam: Green Process. Synth. Vol. 6 (2017), p.477

Google Scholar

[25] A. Adhikari, L. Lamichhane, A. Adhikari, G. Gyawali, D. Acharya, E.R. Baral and K. Chhetri: Inorganics. Vol. 10 (2022), p.1

DOI: 10.3390/inorganics10080113

Google Scholar

[26] K. Jyoti, M. Baunthiyal and A. Singh: J. Radiat. Res. Appl. Sci. Vol. 9 (2015), p.217

Google Scholar

[27] S. Aswathy Aromal and D. Philip: Spectrochim. Acta - Part A Mol. Biomol. Vol. 97 (2012), p.1

Google Scholar

[28] C.H.N. De Barros, G.C.F. Cruz, W. Mayrink and L. Tasic: Nanotechnol. Sci. Appl. Vol. 11 (2018), p.1

Google Scholar

[29] T.R.K. Reddy and H.J. Kim: Appl. Phys. A Mater. Sci. Process. Vol. 122 (2016), p.1

Google Scholar

[30] F. Ahmed, H. Kabir and H. Xiong: Front. Chem. Vol. 8 (2020), p.1

Google Scholar