[1]
Chad Abbey and Gza Joos. 2007. Supercapacitor Energy Storage for Wind Energy Applications. IEEE Transactions on Industry Applications 43, 3: 769–776
DOI: 10.1109/TIA.2007.895768
Google Scholar
[2]
N. Bonanos, B. C. H. Steele, and E. P. Butler. 2005. Applications of Impedance Spectroscopy. In Impedance Spectroscopy. 205–537
DOI: 10.1002/0471716243.ch4
Google Scholar
[3]
Jizhang Chen, Li Yang, Shaohua Fang, and Yufeng Tang. 2010. Synthesis of Sawtooth-like Li4Ti5O12 Nanosheets as Anode Materials for Li-ion Batteries. Electrochimica Acta 55, 22: 6596–6600
DOI: 10.1016/j.electacta.2010.06.015
Google Scholar
[4]
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna. 2006. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science 313, 5794: 1760–1763
DOI: 10.1126/science.1132195
Google Scholar
[5]
Pei Dong, Marco-Tulio F. Rodrigues, Jing Zhang, Raquel S. Borges, Kaushik Kalaga, Arava L.M. Reddy, Glaura G. Silva, Pulickel M. Ajayan, and Jun Lou. 2017. A Flexible Solar Cell/Supercapacitor Integrated Energy Device. Nano Energy 42: 181–186
DOI: 10.1016/j.nanoen.2017.10.035
Google Scholar
[6]
Johann M. Feckl, Ksenia Fominykh, Markus Döblinger, Dina Fattakhova-Rohlfing, and Thomas Bein. 2012. Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion. Angewandte Chemie 124, 30: 7577–7581
DOI: 10.1002/ange.201201463
Google Scholar
[7]
Chao Feng and Xinming Wu. 2023. Interfacial Impedance Model and Ion Diffusion Mechanism of MXene/NiCo-LDHs Interstratification Hybrid Assembly Electrode. Journal of Colloid and Interface Science 635: 316–322
DOI: 10.1016/j.jcis.2022.12.143
Google Scholar
[8]
Simon Fleischmann, James B. Mitchell, Ruocun Wang, Cheng Zhan, De-en Jiang, Volker Presser, and Veronica Augustyn. 2020. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews 120, 14: 6738–6782
DOI: 10.1021/acs.chemrev.0c00170
Google Scholar
[9]
Atsushi Funabiki, Minoru Inaba, Zempachi Ogumi, Shin‐ichi Yuasa, Junhiko Otsuji, and Akimasa Tasaka. 1998. Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder. Journal of The Electrochemical Society 145, 1: 172–178
DOI: 10.1149/1.1838231
Google Scholar
[10]
Miran Gaberšček. 2021. Understanding Li-based Battery Materials via Electrochemical Impedance Spectroscopy. Nature Communications 12, 1: 6513
DOI: 10.1038/s41467-021-26894-5
Google Scholar
[11]
Adnan Harb. 2011. Energy Harvesting: State-of-the-art. Renewable Energy 36, 10: 2641–2654
DOI: 10.1016/j.renene.2010.06.014
Google Scholar
[12]
James L. Hart, Kanit Hantanasirisakul, Andrew C. Lang, Babak Anasori, David Pinto, Yevheniy Pivak, J. Tijn van Omme, Steven J. May, Yury Gogotsi, and Mitra L. Taheri. 2019. Control of MXenes' Electronic Properties through Termination and Intercalation. Nature Communications 10, 1: 522
DOI: 10.1038/s41467-018-08169-8
Google Scholar
[13]
Minmin Hu, Hui Zhang, Tao Hu, Bingbing Fan, Xiaohui Wang, and Zhenjiang Li. 2020. Emerging 2D MXenes for Supercapacitors: Status, Challenges and Prospects. Chemical Society Reviews 49, 18: 6666–6693
DOI: 10.1039/D0CS00175A
Google Scholar
[14]
Jun Huang. 2018. Diffusion Impedance of Electroactive Materials, Electrolytic Solutions and Porous Electrodes: Warburg Impedance and Beyond. Electrochimica Acta 281: 170–188
DOI: 10.1016/j.electacta.2018.05.136
Google Scholar
[15]
Meng Huang, Ming Li, Chaojiang Niu, Qi Li, and Liqiang Mai. 2019. Recent Advances in Rational Electrode Designs for High-Performance Alkaline Rechargeable Batteries. Advanced Functional Materials 29, 11: 1807847
DOI: 10.1002/adfm.201807847
Google Scholar
[16]
Zi-Hang Huang, Yu Song, Xin-Xin Xu, and Xiao-Xia Liu. 2015. Ordered Polypyrrole Nanowire Arrays Grown on a Carbon Cloth Substrate for a High-Performance Pseudocapacitor Electrode. ACS Applied Materials & Interfaces 7, 45: 25506–25513
DOI: 10.1021/acsami.5b08830
Google Scholar
[17]
Torben Jacobsen and Keld West. 1995. Diffusion Impedance in Planar, Cylindrical and Spherical Symmetry. Electrochimica Acta 40, 2: 255–262
DOI: 10.1016/0013-4686(94)E0192-3
Google Scholar
[18]
Wenlong Jing, Chean Hung Lai, Shung Hui Wallace Wong, and Mou Ling Dennis Wong. 2017. Battery‐supercapacitor Hybrid Energy Storage System in Standalone DC Microgrids: a Review. IET Renewable Power Generation 11, 4: 461–469
DOI: 10.1049/iet-rpg.2016.0500
Google Scholar
[19]
Denis Johnson, Kyle Hansen, Ray Yoo, and Abdoulaye Djire. 2022. Elucidating the Charge Storage Mechanism on Ti3C2 MXene through In Situ Raman Spectroelectrochemistry. ChemElectroChem 9, 18
DOI: 10.1002/celc.202200555
Google Scholar
[20]
Jesse S. Ko, Megan B. Sassin, Debra R. Rolison, and Jeffrey W. Long. 2018. Deconvolving Double-layer, Pseudocapacitance, and Battery-like Charge-storage Mechanisms in Nanoscale LiMn2O4 at 3D Carbon Architectures. Electrochimica Acta 275: 225–235
DOI: 10.1016/j.electacta.2018.04.149
Google Scholar
[21]
Narendra Kurra, Simge Uzun, Geetha Valurouthu, and Yury Gogotsi. 2021. Mapping (Pseudo)Capacitive Charge Storage Dynamics in Titanium Carbide MXene Electrodes in Aqueous Electrolytes Using 3D Bode Analysis. Energy Storage Materials 39: 347–353
DOI: 10.1016/j.ensm.2021.04.037
Google Scholar
[22]
Jakub Lach, Kamil Wróbel, Justyna Wróbel, Piotr Podsadni, and Andrzej Czerwiński. 2019. Applications of Carbon in Lead-acid Batteries: a Review. Journal of Solid State Electrochemistry 23, 3: 693–705
DOI: 10.1007/s10008-018-04174-5
Google Scholar
[23]
Min-Joon Lee, Sanghan Lee, Pilgun Oh, Youngsik Kim, and Jaephil Cho. 2014. High Performance LiMn2O4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries. Nano Letters 14, 2: 993–999
DOI: 10.1021/nl404430e
Google Scholar
[24]
Shuo Li, Qi Shi, Yang Li, Jie Yang, Ting‐Hsiang Chang, Jianwen Jiang, and Po‐Yen Chen. 2020. Intercalation of Metal Ions into Ti3C2Tx MXene Electrodes for High‐Areal‐Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes. Advanced Functional Materials 30, 40: 2003721
DOI: 10.1002/adfm.202003721
Google Scholar
[25]
Yu-Sheng Lin and Jenq-Gong Duh. 2011. Facile Synthesis of Mesoporous Lithium Titanate Spheres for High Rate Lithium-ion Batteries. Journal of Power Sources 196, 24: 10698–10703
DOI: 10.1016/j.jpowsour.2011.09.007
Google Scholar
[26]
Zheng Ling, Chang E. Ren, Meng-Qiang Zhao, Jian Yang, James M. Giammarco, Jieshan Qiu, Michel W. Barsoum, and Yury Gogotsi. 2014. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proceedings of the National Academy of Sciences 111, 47: 16676–16681
DOI: 10.1073/pnas.1414215111
Google Scholar
[27]
Zhiyong Liu, Yan Zhong, Bo Sun, Xingyue Liu, Jinghui Han, Tielin Shi, Zirong Tang, and Guanglan Liao. 2017. Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage. ACS Applied Materials & Interfaces 9, 27: 22361–22368
DOI: 10.1021/acsami.7b01471
Google Scholar
[28]
Maria R. Lukatskaya, Olha Mashtalir, Chang E. Ren, Yohan Dall'Agnese, Patrick Rozier, Pierre Louis Taberna, Michael Naguib, Patrice Simon, Michel W. Barsoum, and Yury Gogotsi. 2013. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 341, 6153: 1502–1505
DOI: 10.1126/science.1241488
Google Scholar
[29]
Arumugam Manthiram. 2020. A Reflection on Lithium-ion Battery Cathode Chemistry. Nature Communications 11, 1: 1550
DOI: 10.1038/s41467-020-15355-0
Google Scholar
[30]
Ming-Shun Lu, Chung-Liang Chang, Wei-Jen Lee, and Li Wang. 2009. Combining the Wind Power Generation System With Energy Storage Equipment. IEEE Transactions on Industry Applications 45, 6: 2109–2115
DOI: 10.1109/TIA.2009.2031937
Google Scholar
[31]
Nourhan Mohamed and Nageh K. Allam. 2020. Recent advances in the design of cathode materials for Li-ion batteries. RSC Advances 10, 37: 21662–21685
DOI: 10.1039/D0RA03314F
Google Scholar
[32]
Guillaume A. Muller, John B. Cook, Hyung-Seok Kim, Sarah H. Tolbert, and Bruce Dunn. 2015. High Performance Pseudocapacitor Based on 2D Layered Metal Chalcogenide Nanocrystals. Nano Letters 15, 3: 1911–1917
DOI: 10.1021/nl504764m
Google Scholar
[33]
V.S. Muralidharan. 1997. Warburg impedance ‐ Basics Revisited. Anti-Corrosion Methods and Materials 44, 1: 26–29
DOI: 10.1108/00035599710157387
Google Scholar
[34]
E. O Ogunniyi and HCvZ Pienaar. 2017. Overview of Battery Energy Storage System Advancement for Renewable (Photovoltaic) Energy Applications. In 2017 International Conference on the Domestic Use of Energy (DUE), 233–239
DOI: 10.23919/DUE.2017.7931849
Google Scholar
[35]
Tsutomu Ohzuku, Atsushi Ueda, and Norihiro Yamamoto. 1995. Zero‐Strain Insertion Material of Li [ Li1/3Ti5/3]O4 for Rechargeable Lithium Cells. Journal of The Electrochemical Society 142, 5: 1431–1435
DOI: 10.1149/1.2048592
Google Scholar
[36]
Xiang Sun, Gongkai Wang, Jiann-Yang Hwang, and Jie Lian. 2011. Porous Nickel Oxide Nano-sheets for High Performance Pseudocapacitance Materials. Journal of Materials Chemistry 21, 41: 16581
DOI: 10.1039/c1jm12734a
Google Scholar
[37]
Faxing Wang, Xiongwei Wu, Xinhai Yuan, Zaichun Liu, Yi Zhang, Lijun Fu, Yusong Zhu, Qingming Zhou, Yuping Wu, and Wei Huang. 2017. Latest Advances in Supercapacitors: from New Electrode Materials to Novel Device Designs. Chemical Society Reviews 46, 22: 6816–6854
DOI: 10.1039/C7CS00205J
Google Scholar
[38]
John Wang, Julien Polleux, James Lim, and Bruce Dunn. 2007. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO 2 (Anatase) Nanoparticles. The Journal of Physical Chemistry C 111, 40: 14925–14931
DOI: 10.1021/jp074464w
Google Scholar
[39]
Martin Winter and Ralph J. Brodd. 2004. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 104, 10: 4245–4270
DOI: 10.1021/cr020730k
Google Scholar
[40]
Jijian Xu. 2022. Critical Review on cathode–electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries. Nano-Micro Letters 14, 1: 166
DOI: 10.1007/s40820-022-00917-2
Google Scholar
[41]
Ting-Feng Yi, J. Shu, Ying Wang, Jing Xue, Jun Meng, Cai-Bo Yue, and Rong-Sun Zhu. 2011. Effect of Treated Temperature on Structure and Performance of LiCoO2 Coated by Li4Ti5O12. Surface and Coatings Technology 205, 13–14: 3885–3889
DOI: 10.1016/j.surfcoat.2011.02.003
Google Scholar
[42]
Fan Zhang, Tengfei Zhang, Xi Yang, Long Zhang, Kai Leng, Yi Huang, and Yongsheng Chen. 2013. A High-Performance Supercapacitor-battery Hybrid Energy Storage Device Based on Graphene-enhanced Electrode Materials with Ultrahigh Energy Density. Energy & Environmental Science 6, 5: 1623
DOI: 10.1039/c3ee40509e
Google Scholar
[43]
Bote Zhao, Ran Ran, Meilin Liu, and Zongping Shao. 2015. A Comprehensive Review of Li4Ti5O12-based Electrodes for Lithium-ion Batteries: The Latest Advancements and Future Perspectives. Materials Science and Engineering: R: Reports 98: 1–71
DOI: 10.1016/j.mser.2015.10.001
Google Scholar
[44]
Jingyuan Zhao and Andrew F. Burke. 2021. Review on Supercapacitors: Technologies and Performance Evaluation. Journal of Energy Chemistry 59: 276–291
DOI: 10.1016/j.jechem.2020.11.013
Google Scholar
[45]
Wenhua Zuo, Ruizhi Li, Cheng Zhou, Yuanyuan Li, Jianlong Xia, and Jinping Liu. 2017. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science 4, 7: 1600539
DOI: 10.1002/advs.201600539
Google Scholar
[46]
Wenhua Zuo, Chong Wang, Yuanyuan Li, and Jinping Liu. 2015. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12. Scientific Reports 5, 1: 7780
DOI: 10.1038/srep07780
Google Scholar