Electrochemical Characterization of Battery-Supercapacitor Hybrid Based on Li4Ti5O12 and Ti3C2

Article Preview

Abstract:

Battery-supercapacitor hybrids (BSHs) are promising energy storage devices that exhibit large energy density, high power density. In this research, BSH devices based on Li4Ti5O12 and Ti3C2 electrodes are fabricated. Through cyclic voltammetry, it is discovered that the kinetics of charging/discharging are diffusion-controlled. 3D Bode plots and Nyquist Plots indicate that bounded diffusion might occur. Regarding the performance, the 70 wt.% Li4Ti5O12-Ti3C2 BSH shows the most balanced specific energy (9.9 mW∙h/kg) and specific power (3.0 W/kg) at 100 mV/s. The largest specific capacitance of the 70 wt.% Li4Ti5O12-Ti3C2 BSH is 81.6 F/kg at 5 mV/s.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1113)

Pages:

55-68

Citation:

Online since:

February 2024

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chad Abbey and Gza Joos. 2007. Supercapacitor Energy Storage for Wind Energy Applications. IEEE Transactions on Industry Applications 43, 3: 769–776

DOI: 10.1109/TIA.2007.895768

Google Scholar

[2] N. Bonanos, B. C. H. Steele, and E. P. Butler. 2005. Applications of Impedance Spectroscopy. In Impedance Spectroscopy. 205–537

DOI: 10.1002/0471716243.ch4

Google Scholar

[3] Jizhang Chen, Li Yang, Shaohua Fang, and Yufeng Tang. 2010. Synthesis of Sawtooth-like Li4Ti5O12 Nanosheets as Anode Materials for Li-ion Batteries. Electrochimica Acta 55, 22: 6596–6600

DOI: 10.1016/j.electacta.2010.06.015

Google Scholar

[4] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna. 2006. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science 313, 5794: 1760–1763

DOI: 10.1126/science.1132195

Google Scholar

[5] Pei Dong, Marco-Tulio F. Rodrigues, Jing Zhang, Raquel S. Borges, Kaushik Kalaga, Arava L.M. Reddy, Glaura G. Silva, Pulickel M. Ajayan, and Jun Lou. 2017. A Flexible Solar Cell/Supercapacitor Integrated Energy Device. Nano Energy 42: 181–186

DOI: 10.1016/j.nanoen.2017.10.035

Google Scholar

[6] Johann M. Feckl, Ksenia Fominykh, Markus Döblinger, Dina Fattakhova-Rohlfing, and Thomas Bein. 2012. Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion. Angewandte Chemie 124, 30: 7577–7581

DOI: 10.1002/ange.201201463

Google Scholar

[7] Chao Feng and Xinming Wu. 2023. Interfacial Impedance Model and Ion Diffusion Mechanism of MXene/NiCo-LDHs Interstratification Hybrid Assembly Electrode. Journal of Colloid and Interface Science 635: 316–322

DOI: 10.1016/j.jcis.2022.12.143

Google Scholar

[8] Simon Fleischmann, James B. Mitchell, Ruocun Wang, Cheng Zhan, De-en Jiang, Volker Presser, and Veronica Augustyn. 2020. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews 120, 14: 6738–6782

DOI: 10.1021/acs.chemrev.0c00170

Google Scholar

[9] Atsushi Funabiki, Minoru Inaba, Zempachi Ogumi, Shin‐ichi Yuasa, Junhiko Otsuji, and Akimasa Tasaka. 1998. Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder. Journal of The Electrochemical Society 145, 1: 172–178

DOI: 10.1149/1.1838231

Google Scholar

[10] Miran Gaberšček. 2021. Understanding Li-based Battery Materials via Electrochemical Impedance Spectroscopy. Nature Communications 12, 1: 6513

DOI: 10.1038/s41467-021-26894-5

Google Scholar

[11] Adnan Harb. 2011. Energy Harvesting: State-of-the-art. Renewable Energy 36, 10: 2641–2654

DOI: 10.1016/j.renene.2010.06.014

Google Scholar

[12] James L. Hart, Kanit Hantanasirisakul, Andrew C. Lang, Babak Anasori, David Pinto, Yevheniy Pivak, J. Tijn van Omme, Steven J. May, Yury Gogotsi, and Mitra L. Taheri. 2019. Control of MXenes' Electronic Properties through Termination and Intercalation. Nature Communications 10, 1: 522

DOI: 10.1038/s41467-018-08169-8

Google Scholar

[13] Minmin Hu, Hui Zhang, Tao Hu, Bingbing Fan, Xiaohui Wang, and Zhenjiang Li. 2020. Emerging 2D MXenes for Supercapacitors: Status, Challenges and Prospects. Chemical Society Reviews 49, 18: 6666–6693

DOI: 10.1039/D0CS00175A

Google Scholar

[14] Jun Huang. 2018. Diffusion Impedance of Electroactive Materials, Electrolytic Solutions and Porous Electrodes: Warburg Impedance and Beyond. Electrochimica Acta 281: 170–188

DOI: 10.1016/j.electacta.2018.05.136

Google Scholar

[15] Meng Huang, Ming Li, Chaojiang Niu, Qi Li, and Liqiang Mai. 2019. Recent Advances in Rational Electrode Designs for High-Performance Alkaline Rechargeable Batteries. Advanced Functional Materials 29, 11: 1807847

DOI: 10.1002/adfm.201807847

Google Scholar

[16] Zi-Hang Huang, Yu Song, Xin-Xin Xu, and Xiao-Xia Liu. 2015. Ordered Polypyrrole Nanowire Arrays Grown on a Carbon Cloth Substrate for a High-Performance Pseudocapacitor Electrode. ACS Applied Materials & Interfaces 7, 45: 25506–25513

DOI: 10.1021/acsami.5b08830

Google Scholar

[17] Torben Jacobsen and Keld West. 1995. Diffusion Impedance in Planar, Cylindrical and Spherical Symmetry. Electrochimica Acta 40, 2: 255–262

DOI: 10.1016/0013-4686(94)E0192-3

Google Scholar

[18] Wenlong Jing, Chean Hung Lai, Shung Hui Wallace Wong, and Mou Ling Dennis Wong. 2017. Battery‐supercapacitor Hybrid Energy Storage System in Standalone DC Microgrids: a Review. IET Renewable Power Generation 11, 4: 461–469

DOI: 10.1049/iet-rpg.2016.0500

Google Scholar

[19] Denis Johnson, Kyle Hansen, Ray Yoo, and Abdoulaye Djire. 2022. Elucidating the Charge Storage Mechanism on Ti3C2 MXene through In Situ Raman Spectroelectrochemistry. ChemElectroChem 9, 18

DOI: 10.1002/celc.202200555

Google Scholar

[20] Jesse S. Ko, Megan B. Sassin, Debra R. Rolison, and Jeffrey W. Long. 2018. Deconvolving Double-layer, Pseudocapacitance, and Battery-like Charge-storage Mechanisms in Nanoscale LiMn2O4 at 3D Carbon Architectures. Electrochimica Acta 275: 225–235

DOI: 10.1016/j.electacta.2018.04.149

Google Scholar

[21] Narendra Kurra, Simge Uzun, Geetha Valurouthu, and Yury Gogotsi. 2021. Mapping (Pseudo)Capacitive Charge Storage Dynamics in Titanium Carbide MXene Electrodes in Aqueous Electrolytes Using 3D Bode Analysis. Energy Storage Materials 39: 347–353

DOI: 10.1016/j.ensm.2021.04.037

Google Scholar

[22] Jakub Lach, Kamil Wróbel, Justyna Wróbel, Piotr Podsadni, and Andrzej Czerwiński. 2019. Applications of Carbon in Lead-acid Batteries: a Review. Journal of Solid State Electrochemistry 23, 3: 693–705

DOI: 10.1007/s10008-018-04174-5

Google Scholar

[23] Min-Joon Lee, Sanghan Lee, Pilgun Oh, Youngsik Kim, and Jaephil Cho. 2014. High Performance LiMn2O4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries. Nano Letters 14, 2: 993–999

DOI: 10.1021/nl404430e

Google Scholar

[24] Shuo Li, Qi Shi, Yang Li, Jie Yang, Ting‐Hsiang Chang, Jianwen Jiang, and Po‐Yen Chen. 2020. Intercalation of Metal Ions into Ti3C2Tx MXene Electrodes for High‐Areal‐Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes. Advanced Functional Materials 30, 40: 2003721

DOI: 10.1002/adfm.202003721

Google Scholar

[25] Yu-Sheng Lin and Jenq-Gong Duh. 2011. Facile Synthesis of Mesoporous Lithium Titanate Spheres for High Rate Lithium-ion Batteries. Journal of Power Sources 196, 24: 10698–10703

DOI: 10.1016/j.jpowsour.2011.09.007

Google Scholar

[26] Zheng Ling, Chang E. Ren, Meng-Qiang Zhao, Jian Yang, James M. Giammarco, Jieshan Qiu, Michel W. Barsoum, and Yury Gogotsi. 2014. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proceedings of the National Academy of Sciences 111, 47: 16676–16681

DOI: 10.1073/pnas.1414215111

Google Scholar

[27] Zhiyong Liu, Yan Zhong, Bo Sun, Xingyue Liu, Jinghui Han, Tielin Shi, Zirong Tang, and Guanglan Liao. 2017. Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage. ACS Applied Materials & Interfaces 9, 27: 22361–22368

DOI: 10.1021/acsami.7b01471

Google Scholar

[28] Maria R. Lukatskaya, Olha Mashtalir, Chang E. Ren, Yohan Dall'Agnese, Patrick Rozier, Pierre Louis Taberna, Michael Naguib, Patrice Simon, Michel W. Barsoum, and Yury Gogotsi. 2013. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 341, 6153: 1502–1505

DOI: 10.1126/science.1241488

Google Scholar

[29] Arumugam Manthiram. 2020. A Reflection on Lithium-ion Battery Cathode Chemistry. Nature Communications 11, 1: 1550

DOI: 10.1038/s41467-020-15355-0

Google Scholar

[30] Ming-Shun Lu, Chung-Liang Chang, Wei-Jen Lee, and Li Wang. 2009. Combining the Wind Power Generation System With Energy Storage Equipment. IEEE Transactions on Industry Applications 45, 6: 2109–2115

DOI: 10.1109/TIA.2009.2031937

Google Scholar

[31] Nourhan Mohamed and Nageh K. Allam. 2020. Recent advances in the design of cathode materials for Li-ion batteries. RSC Advances 10, 37: 21662–21685

DOI: 10.1039/D0RA03314F

Google Scholar

[32] Guillaume A. Muller, John B. Cook, Hyung-Seok Kim, Sarah H. Tolbert, and Bruce Dunn. 2015. High Performance Pseudocapacitor Based on 2D Layered Metal Chalcogenide Nanocrystals. Nano Letters 15, 3: 1911–1917

DOI: 10.1021/nl504764m

Google Scholar

[33] V.S. Muralidharan. 1997. Warburg impedance ‐ Basics Revisited. Anti-Corrosion Methods and Materials 44, 1: 26–29

DOI: 10.1108/00035599710157387

Google Scholar

[34] E. O Ogunniyi and HCvZ Pienaar. 2017. Overview of Battery Energy Storage System Advancement for Renewable (Photovoltaic) Energy Applications. In 2017 International Conference on the Domestic Use of Energy (DUE), 233–239

DOI: 10.23919/DUE.2017.7931849

Google Scholar

[35] Tsutomu Ohzuku, Atsushi Ueda, and Norihiro Yamamoto. 1995. Zero‐Strain Insertion Material of Li [ Li1/3Ti5/3]O4 for Rechargeable Lithium Cells. Journal of The Electrochemical Society 142, 5: 1431–1435

DOI: 10.1149/1.2048592

Google Scholar

[36] Xiang Sun, Gongkai Wang, Jiann-Yang Hwang, and Jie Lian. 2011. Porous Nickel Oxide Nano-sheets for High Performance Pseudocapacitance Materials. Journal of Materials Chemistry 21, 41: 16581

DOI: 10.1039/c1jm12734a

Google Scholar

[37] Faxing Wang, Xiongwei Wu, Xinhai Yuan, Zaichun Liu, Yi Zhang, Lijun Fu, Yusong Zhu, Qingming Zhou, Yuping Wu, and Wei Huang. 2017. Latest Advances in Supercapacitors: from New Electrode Materials to Novel Device Designs. Chemical Society Reviews 46, 22: 6816–6854

DOI: 10.1039/C7CS00205J

Google Scholar

[38] John Wang, Julien Polleux, James Lim, and Bruce Dunn. 2007. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO 2 (Anatase) Nanoparticles. The Journal of Physical Chemistry C 111, 40: 14925–14931

DOI: 10.1021/jp074464w

Google Scholar

[39] Martin Winter and Ralph J. Brodd. 2004. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 104, 10: 4245–4270

DOI: 10.1021/cr020730k

Google Scholar

[40] Jijian Xu. 2022. Critical Review on cathode–electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries. Nano-Micro Letters 14, 1: 166

DOI: 10.1007/s40820-022-00917-2

Google Scholar

[41] Ting-Feng Yi, J. Shu, Ying Wang, Jing Xue, Jun Meng, Cai-Bo Yue, and Rong-Sun Zhu. 2011. Effect of Treated Temperature on Structure and Performance of LiCoO2 Coated by Li4Ti5O12. Surface and Coatings Technology 205, 13–14: 3885–3889

DOI: 10.1016/j.surfcoat.2011.02.003

Google Scholar

[42] Fan Zhang, Tengfei Zhang, Xi Yang, Long Zhang, Kai Leng, Yi Huang, and Yongsheng Chen. 2013. A High-Performance Supercapacitor-battery Hybrid Energy Storage Device Based on Graphene-enhanced Electrode Materials with Ultrahigh Energy Density. Energy & Environmental Science 6, 5: 1623

DOI: 10.1039/c3ee40509e

Google Scholar

[43] Bote Zhao, Ran Ran, Meilin Liu, and Zongping Shao. 2015. A Comprehensive Review of Li4Ti5O12-based Electrodes for Lithium-ion Batteries: The Latest Advancements and Future Perspectives. Materials Science and Engineering: R: Reports 98: 1–71

DOI: 10.1016/j.mser.2015.10.001

Google Scholar

[44] Jingyuan Zhao and Andrew F. Burke. 2021. Review on Supercapacitors: Technologies and Performance Evaluation. Journal of Energy Chemistry 59: 276–291

DOI: 10.1016/j.jechem.2020.11.013

Google Scholar

[45] Wenhua Zuo, Ruizhi Li, Cheng Zhou, Yuanyuan Li, Jianlong Xia, and Jinping Liu. 2017. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science 4, 7: 1600539

DOI: 10.1002/advs.201600539

Google Scholar

[46] Wenhua Zuo, Chong Wang, Yuanyuan Li, and Jinping Liu. 2015. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12. Scientific Reports 5, 1: 7780

DOI: 10.1038/srep07780

Google Scholar