[1]
N. Rao, Materials for Gas Turbines – An Overview. In Advances in Gas Turbine Technology. (2011) 293–314
DOI: 10.5772/20730
Google Scholar
[2]
M. Perrut, P. Caron, M. Thomas, A. Couret, High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys. Comptes Rendus Physique. 19 (2018) 657–671
DOI: 10.1016/j.crhy.2018.10.002
Google Scholar
[3]
T. Noda, Application of cast gamma TiAl for automobiles. Intermetallics. 6 (1998) 709–713
DOI: 10.1016/s0966-9795(98)00060-0
Google Scholar
[4]
B. P. Bewlay, S. Nag, A. Suzuki, M. J. Weimer, TiAl alloys in commercial aircraft engines. Materials at High Temperatures, 33 (2016) 549–559
DOI: 10.1080/09603409.2016.1183068
Google Scholar
[5]
F. Appel, H. Clemens, F.D. Fischer, Modeling concepts for intermetallic titanium aluminides. Progress in Materials Science. 81 (2016) 55-124
DOI: 10.1016/j.pmatsci.2016.01.001
Google Scholar
[6]
H. Clemens, S. Mayer, Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Advanced Engineering Materials. 15 (2012) 191–215
DOI: 10.1002/adem.201200231
Google Scholar
[7]
X. Liu, Q. Lin, W. Zhang, C.V. Horne, L. Cha, Microstructure Design and Its Effect on Mechanical Properties in Gamma Titanium Aluminides, Metals. 11 (2021) 1644
DOI: 10.3390/met11101644
Google Scholar
[8]
Y. Guo, Y. Chen, S. Xiao, J. Tian, Z. Zheng, L. Xu, Influence of nano-Y2O3 addition on microstructure and tensile properties of high-Al TiAl alloys, Materials Science and Engineering A (2020) 139803
DOI: 10.1016/j.msea.2020.139803
Google Scholar
[9]
X. Cui, Y. Zhang, Y. Yao, H. Ding, L. Geng, L. Huang, Y. Sun, Synthesis and Fracture Characteristics of TiB2-TiAl Composites with a Unique Microlaminated Architecture. Metallurgical and Materials Transactions A. 50 (2019) 5853–5865
DOI: 10.1007/s11661-019-05475-8
Google Scholar
[10]
H. Geng, C. Cui, L. Liu, Y. Liang, The microstructures and mechanical properties of hybrid in-situ AlN-TiC-TiN-Al3Ti/Al reinforced Al-Cu-Mn-Ti alloy matrix composites, Journal of Alloys and Compounds, 903 (2022) 163902
DOI: 10.1016/j.jallcom.2022.163902
Google Scholar
[11]
L. Dong, W. Zhang, J. Li, Y. Yin, Fabrication of TiAl/B4C Composites from an Al-Ti-B4C System Reinforced by TiC, TiB2 In Situ. Advanced Materials Research. 79-82 (2009) 477–480
DOI: 10.4028/www.scientific.net/amr.79-82.477
Google Scholar
[12]
K.E. Machethe, A.P.I. Popoola, D.I. Adebiyi, O.S.I. Fayomi, Influence of SiC-Ti/Al on the Microstructural and Mechanical Properties of Deposited Ti–6V–4Al Alloy with Cold Spray Technique. Procedia Manufacturing, 7 (2017) 549–555
DOI: 10.1016/j.promfg.2016.12.069
Google Scholar
[13]
J. Wang, L. Kong, T. Li, T. Xiong, A novel TiAl3/Al2O3 composite coating on γ-TiAl alloy and evaluating the oxidation performance, Applied Surface Science. 361 (2016) 90–94
DOI: 10.1016/j.apsusc.2015.11.155
Google Scholar
[14]
Yu. M. Solonin, M. P. Savyak, M. A. Vasilkivska, V. I. Ivchenko, High-Energy Mechanical Grinding to Produce Cr2AlC and Ti2AlC Max Phases, Powder Metall. Met. Ceram. 60 (2021) 259–267
DOI: 10.1007/s11106-021-00236-y
Google Scholar
[15]
P. L. Fauchais, J. V. R.Heberlein, M. I. Boulos, Thermal Spray Fundamentals. From Powder to Part, Springer, New York, 2014
DOI: 10.1007/978-0-387-68991-3
Google Scholar