Structural and Mechanical Properties of SiC-Rich By-Products of the Metal Grade Si Process

Article Preview

Abstract:

Mechanical properties of composites produced from the SiC-rich furnace slag using traditional stone and ceramic machining technologies were studied. A non-uniform mixture of coarse monocrystalline SiC grains soaked with Si-metal and glassy oxide phases represented the microstructure of dense monolithic SiC-rich samples. The fracture mechanism of coarse-grained SiC-rich composites was susceptible to the grain size/sample geometry and machining conditions yielding flexural strength in the range of 50-106 MPa and high compression strength of 750 MPa. Despite inhomogeneous macro and microstructure, mechanical and thermal properties are comparable to the traditionally produced siliconized SiSiC ceramics. It opens up the opportunity for the circular economy and value-added recycling of the Si/FeSi industries’ wastes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1113)

Pages:

87-94

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Saevarsdottir, T. Magnusson and H. Kvande, Reducing the Carbon Footprint: Primary Production of Aluminum and Silicon with Changing Energy Systems, J. Sustain. Metall. 7 (2021) 848–857.

DOI: 10.1007/s40831-021-00429-0

Google Scholar

[2] H. Eijk, H. Harald, Godtland & Casper van Der, Waste and by-products. NTNU, Trondheim, 2020.

Google Scholar

[3] N. Jungbluth, M. Stucki and R. Frischknecht, Photovoltaics. Dubendorf : Swiss Centre for Life Cycle Inventories, 2009.

Google Scholar

[4] A. Abdelrahim, H. Nguyen, M. Omran, M. et al, Development of Cold-Bonded Briquettes Using By-Product-Based Ettringite Binder from Ladle Slag. J. Sustain. Metall. 8 (2022) 468–487.

DOI: 10.1007/s40831-022-00511-1

Google Scholar

[5] T. Willms, T. Echterhof, S. Steinlechner et al, Investigation on the Chemical and Thermal Behavior of Recycling Agglomerates from EAF by-Products. Appl. Sci. 10 (2020) 8309.

DOI: 10.3390/app10228309

Google Scholar

[6] M. S. Leonova, S. S. Timofeeva, Environmental and economic damage from the dust waste formation in the silicon production, IOP Conf. Ser.: Earth Environ. Sci. 229 (2019) 012022.

DOI: 10.1088/1755-1315/229/1/012022

Google Scholar

[7] A. Schei, J.K. Tuset, and H. Tveit. High Silicon Alloys. Trondheim, Tapir Forlag, 1998.

Google Scholar

[8] G. Tranell, M. Andersson, E. Ringdalen, O. Ostrovski and J. J.Steinmo, Reaction Zones in a FeSi75 Furnace – Results from an Industrial Excavation. Finland, INFACON XII 2010, (2010) 710-716.

Google Scholar

[9] M. Andersson, Reaction Mechanisms in the Ferrosilicon Production Process, Master's Thesis, NTNU, Trondheim, 2009.

Google Scholar

[10] E. H. Myrhaug, Non-fossil reduction materials in the silicon process - properties and behaviour (Dr. ing. thesis), NTNU, Trondheim, 2003.

Google Scholar

[11] M. J. Vangskåsen, Metal-producing Mechanisms in the Carbothermic Silicon Process (Dr. ing. thesis), Trondheim, NTNU, 2012.

Google Scholar

[12] V. Andersen, G. Sævarsdóttir, M. Tangstad, Excavation of 160 KW Pilot Scale Si Furnace, , Aspects Min Miner Sci 9 (2022) 000707.

Google Scholar

[13] J. Zhejun. Carbon Behaviour during Si Production, Trondheim, NTNU : Master thesis, 2013.

Google Scholar

[14] M. A. Krokstad, Elektrisk resistivitet i industrielle SiC-slag, Trondheim, NTNU, Master Thesis, 2014.

Google Scholar

[15] M. B. Folstad, M. Tangstad. Trondheim : SINTEF/NTNU/FFF SiO2-CaO-Al2O3 slags in the Si/FeSi furnaces, Trondheim, 2021. Infacon XVI: International Ferro-Alloys Congres.

DOI: 10.2139/ssrn.3922187

Google Scholar

[16] J. L. Baumann, Wetting properties and interactions between SiO2-CaO-Al2O3 slag and SiC, Trondheim, NTNU, Master Thesis, 2022.

Google Scholar

[17] M. Tomkovich. Effect of the grain composition of the initial silicon carbide powder on the structure and properties of reaction-sintered silicon carbide, Journal of Physics Conference Series, 1942 (2021) 012039.

DOI: 10.1088/1742-6596/1942/1/012039

Google Scholar

[18] A. J. Ruys, I. G. Crouch., Siliconized silicon carbide, in: Andrew J. Ruys. Metal-Reinforced Ceramics, Woodhead Publishing, 2021, pp.211-283.

DOI: 10.1016/b978-0-08-102869-8.00007-0

Google Scholar

[19] M. Xu, Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications, Materials Today Communications (2021) 102533.

DOI: 10.1016/j.mtcomm.2021.102533

Google Scholar

[20] S. Khela, A. J. Jickells, S. J. Matthews, The thermal cycling performance of ceramics for gas fired furnaces, The Inst. of Energy's Sec. Int. Conf. on Ceramics in Energy Appl., Pergamon, (1994) pp.273-290.

DOI: 10.1016/b978-0-08-042133-9.50024-1

Google Scholar

[21] Y.-J. Lee, Y. H. Park and T. Hinoki, Influence of Grain Size on Thermal Conductivity of SiC Ceramics, IOP Conf. Series: Materials Science and Engineering, 18 (2011) p.162014.

DOI: 10.1088/1757-899x/18/16/162014

Google Scholar

[22] J.-H. Eom, Y.-W. Kim, S. Raju, Processing and properties of macroporous silicon carbide ceramics: A review, Journal of Asian Ceramic Societies, 1 (2013) pp.220-2042.

DOI: 10.1016/j.jascer.2013.07.003

Google Scholar

[23] J. Roger, M. Avenel, L. Lapuyade, Characterization of SiC ceramics with complex porosity by capillary infiltration: Part B – Filling by molten silicon at 1500 °C, Journal of the European Ceramic Society, 40 (2022) 1869-1876.

DOI: 10.1016/j.jeurceramsoc.2019.12.050

Google Scholar

[24] T. B. Serbenyuk, T. O. Prikhna, V. B. Sverdun et al, The effect of size of the SiC inclusions in the AlN–SiC composite structure on its electrophysical properties. J. Superhard Mater., 38 (2016) 241–250.

DOI: 10.3103/s1063457616040043

Google Scholar

[25] S. I. Yun, S. Nahm, S. W. Park, Effects of SiC particle size on flexural strength, permeability, electrical resistivity, and thermal conductivity of macroporous SiC, Ceramics International, 48 (2022) 1429-1438.

DOI: 10.1016/j.ceramint.2021.09.244

Google Scholar

[26] M. Pelanconi, G. Bianchi, P. Colombo and A. Ortona, Fabrication of dense SiSiC ceramics by a hybrid additive manufacturing process, J Am. Ceram. Soc., 105 (2022) 786-793.

DOI: 10.1111/jace.18134

Google Scholar

[27] F. F. Li, N.-N. Ma, J. Chen, M. Zhu, W.-H. Chen, C.-C. Huang and Z.-R. Huang, SiC ceramic mirror fabricated by additive manufacturing with material extrusion and laser cladding, Additive Manufacturing, 58 (2022) 102994.

DOI: 10.1016/j.addma.2022.102994

Google Scholar

[28] S. Song, Z. Gao, B. Lu, C. Bao, B. Zheng and L. Wang, Performance optimization of complicated structural SiC/Si composite ceramics prepared by selective laser sintering, Ceramics International, 46 (2022) 568-575.

DOI: 10.1016/j.ceramint.2019.09.004

Google Scholar

[29] W. Li et al, Microstructure Evolution and Performance Improvement of Silicon Carbide Ceramics via Impregnation Method, Materials 15 (2022) 1717.

DOI: 10.3390/ma15051717

Google Scholar

[30] E. Scafè, G. Giunta, L. Fabbri, L. Di Rese, G. De Portu, S. Guicciardi, Mechanical behaviour of silicon-silicon carbide composites, J. of the Eur. Ceramic Soc., 16 (1996) 703-712.

DOI: 10.1016/0955-2219(95)00199-9

Google Scholar

[31] C.-S. Kwon, Oh, Y.-S., Lee, S.-M., Han, Y., Shin, H.-I., Kim, Y. and Kim, S., Effect of the SiC Size on the Thermal and Mechanical Properties of Reaction-bonded Silicon Carbide Ceramics, J, of Korean Powder Metallurgy Inst., 21 (2014) 467-72.

DOI: 10.4150/kpmi.2014.21.6.467

Google Scholar

[32] V. Bovda, V. Internal Report MFG Metall- und Ferrolegierungsgesellschaft mbH, Meerbusch, 2022.

Google Scholar

[33] S. Jayakumari, Formation and Characterization of beta and Alfa-silicon carbide prodcued during silicon/ferrosilicon process. NTNU, Trondheim : Thesis Phil. Doc. Deg., 2020.

Google Scholar

[34] Z. Wang, Aging of Si3N4-bonded SiC Sidewall Materials in Hall Héroult Cells, NTNU, Trondheim: Thesis Phil. Doc. Deg., 2010.

Google Scholar

[35] Information on http://www.simonsen.eu/wp-content/uploads/2022/06/sicatec-75.pdf.

Google Scholar

[36] Guozhi, Y. M. Ruan, Z. Zhang, G. Xu, Effect of the Si powder additions on the properties of SiC composites, Ceramics-Silikáty, 56 (2012) 131-197.

Google Scholar