[1]
G. Saevarsdottir, T. Magnusson and H. Kvande, Reducing the Carbon Footprint: Primary Production of Aluminum and Silicon with Changing Energy Systems, J. Sustain. Metall. 7 (2021) 848–857.
DOI: 10.1007/s40831-021-00429-0
Google Scholar
[2]
H. Eijk, H. Harald, Godtland & Casper van Der, Waste and by-products. NTNU, Trondheim, 2020.
Google Scholar
[3]
N. Jungbluth, M. Stucki and R. Frischknecht, Photovoltaics. Dubendorf : Swiss Centre for Life Cycle Inventories, 2009.
Google Scholar
[4]
A. Abdelrahim, H. Nguyen, M. Omran, M. et al, Development of Cold-Bonded Briquettes Using By-Product-Based Ettringite Binder from Ladle Slag. J. Sustain. Metall. 8 (2022) 468–487.
DOI: 10.1007/s40831-022-00511-1
Google Scholar
[5]
T. Willms, T. Echterhof, S. Steinlechner et al, Investigation on the Chemical and Thermal Behavior of Recycling Agglomerates from EAF by-Products. Appl. Sci. 10 (2020) 8309.
DOI: 10.3390/app10228309
Google Scholar
[6]
M. S. Leonova, S. S. Timofeeva, Environmental and economic damage from the dust waste formation in the silicon production, IOP Conf. Ser.: Earth Environ. Sci. 229 (2019) 012022.
DOI: 10.1088/1755-1315/229/1/012022
Google Scholar
[7]
A. Schei, J.K. Tuset, and H. Tveit. High Silicon Alloys. Trondheim, Tapir Forlag, 1998.
Google Scholar
[8]
G. Tranell, M. Andersson, E. Ringdalen, O. Ostrovski and J. J.Steinmo, Reaction Zones in a FeSi75 Furnace – Results from an Industrial Excavation. Finland, INFACON XII 2010, (2010) 710-716.
Google Scholar
[9]
M. Andersson, Reaction Mechanisms in the Ferrosilicon Production Process, Master's Thesis, NTNU, Trondheim, 2009.
Google Scholar
[10]
E. H. Myrhaug, Non-fossil reduction materials in the silicon process - properties and behaviour (Dr. ing. thesis), NTNU, Trondheim, 2003.
Google Scholar
[11]
M. J. Vangskåsen, Metal-producing Mechanisms in the Carbothermic Silicon Process (Dr. ing. thesis), Trondheim, NTNU, 2012.
Google Scholar
[12]
V. Andersen, G. Sævarsdóttir, M. Tangstad, Excavation of 160 KW Pilot Scale Si Furnace, , Aspects Min Miner Sci 9 (2022) 000707.
Google Scholar
[13]
J. Zhejun. Carbon Behaviour during Si Production, Trondheim, NTNU : Master thesis, 2013.
Google Scholar
[14]
M. A. Krokstad, Elektrisk resistivitet i industrielle SiC-slag, Trondheim, NTNU, Master Thesis, 2014.
Google Scholar
[15]
M. B. Folstad, M. Tangstad. Trondheim : SINTEF/NTNU/FFF SiO2-CaO-Al2O3 slags in the Si/FeSi furnaces, Trondheim, 2021. Infacon XVI: International Ferro-Alloys Congres.
DOI: 10.2139/ssrn.3922187
Google Scholar
[16]
J. L. Baumann, Wetting properties and interactions between SiO2-CaO-Al2O3 slag and SiC, Trondheim, NTNU, Master Thesis, 2022.
Google Scholar
[17]
M. Tomkovich. Effect of the grain composition of the initial silicon carbide powder on the structure and properties of reaction-sintered silicon carbide, Journal of Physics Conference Series, 1942 (2021) 012039.
DOI: 10.1088/1742-6596/1942/1/012039
Google Scholar
[18]
A. J. Ruys, I. G. Crouch., Siliconized silicon carbide, in: Andrew J. Ruys. Metal-Reinforced Ceramics, Woodhead Publishing, 2021, pp.211-283.
DOI: 10.1016/b978-0-08-102869-8.00007-0
Google Scholar
[19]
M. Xu, Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications, Materials Today Communications (2021) 102533.
DOI: 10.1016/j.mtcomm.2021.102533
Google Scholar
[20]
S. Khela, A. J. Jickells, S. J. Matthews, The thermal cycling performance of ceramics for gas fired furnaces, The Inst. of Energy's Sec. Int. Conf. on Ceramics in Energy Appl., Pergamon, (1994) pp.273-290.
DOI: 10.1016/b978-0-08-042133-9.50024-1
Google Scholar
[21]
Y.-J. Lee, Y. H. Park and T. Hinoki, Influence of Grain Size on Thermal Conductivity of SiC Ceramics, IOP Conf. Series: Materials Science and Engineering, 18 (2011) p.162014.
DOI: 10.1088/1757-899x/18/16/162014
Google Scholar
[22]
J.-H. Eom, Y.-W. Kim, S. Raju, Processing and properties of macroporous silicon carbide ceramics: A review, Journal of Asian Ceramic Societies, 1 (2013) pp.220-2042.
DOI: 10.1016/j.jascer.2013.07.003
Google Scholar
[23]
J. Roger, M. Avenel, L. Lapuyade, Characterization of SiC ceramics with complex porosity by capillary infiltration: Part B – Filling by molten silicon at 1500 °C, Journal of the European Ceramic Society, 40 (2022) 1869-1876.
DOI: 10.1016/j.jeurceramsoc.2019.12.050
Google Scholar
[24]
T. B. Serbenyuk, T. O. Prikhna, V. B. Sverdun et al, The effect of size of the SiC inclusions in the AlN–SiC composite structure on its electrophysical properties. J. Superhard Mater., 38 (2016) 241–250.
DOI: 10.3103/s1063457616040043
Google Scholar
[25]
S. I. Yun, S. Nahm, S. W. Park, Effects of SiC particle size on flexural strength, permeability, electrical resistivity, and thermal conductivity of macroporous SiC, Ceramics International, 48 (2022) 1429-1438.
DOI: 10.1016/j.ceramint.2021.09.244
Google Scholar
[26]
M. Pelanconi, G. Bianchi, P. Colombo and A. Ortona, Fabrication of dense SiSiC ceramics by a hybrid additive manufacturing process, J Am. Ceram. Soc., 105 (2022) 786-793.
DOI: 10.1111/jace.18134
Google Scholar
[27]
F. F. Li, N.-N. Ma, J. Chen, M. Zhu, W.-H. Chen, C.-C. Huang and Z.-R. Huang, SiC ceramic mirror fabricated by additive manufacturing with material extrusion and laser cladding, Additive Manufacturing, 58 (2022) 102994.
DOI: 10.1016/j.addma.2022.102994
Google Scholar
[28]
S. Song, Z. Gao, B. Lu, C. Bao, B. Zheng and L. Wang, Performance optimization of complicated structural SiC/Si composite ceramics prepared by selective laser sintering, Ceramics International, 46 (2022) 568-575.
DOI: 10.1016/j.ceramint.2019.09.004
Google Scholar
[29]
W. Li et al, Microstructure Evolution and Performance Improvement of Silicon Carbide Ceramics via Impregnation Method, Materials 15 (2022) 1717.
DOI: 10.3390/ma15051717
Google Scholar
[30]
E. Scafè, G. Giunta, L. Fabbri, L. Di Rese, G. De Portu, S. Guicciardi, Mechanical behaviour of silicon-silicon carbide composites, J. of the Eur. Ceramic Soc., 16 (1996) 703-712.
DOI: 10.1016/0955-2219(95)00199-9
Google Scholar
[31]
C.-S. Kwon, Oh, Y.-S., Lee, S.-M., Han, Y., Shin, H.-I., Kim, Y. and Kim, S., Effect of the SiC Size on the Thermal and Mechanical Properties of Reaction-bonded Silicon Carbide Ceramics, J, of Korean Powder Metallurgy Inst., 21 (2014) 467-72.
DOI: 10.4150/kpmi.2014.21.6.467
Google Scholar
[32]
V. Bovda, V. Internal Report MFG Metall- und Ferrolegierungsgesellschaft mbH, Meerbusch, 2022.
Google Scholar
[33]
S. Jayakumari, Formation and Characterization of beta and Alfa-silicon carbide prodcued during silicon/ferrosilicon process. NTNU, Trondheim : Thesis Phil. Doc. Deg., 2020.
Google Scholar
[34]
Z. Wang, Aging of Si3N4-bonded SiC Sidewall Materials in Hall Héroult Cells, NTNU, Trondheim: Thesis Phil. Doc. Deg., 2010.
Google Scholar
[35]
Information on http://www.simonsen.eu/wp-content/uploads/2022/06/sicatec-75.pdf.
Google Scholar
[36]
Guozhi, Y. M. Ruan, Z. Zhang, G. Xu, Effect of the Si powder additions on the properties of SiC composites, Ceramics-Silikáty, 56 (2012) 131-197.
Google Scholar