Effect of Mercerization on the Crystallographic, Macromolecular, and Thermal Properties of Plantain Fibers for Fiber Reinforced Composite

Article Preview

Abstract:

In this research, natural fibers (NF) were obtained from plantain pseudo stem. The extracted plantain fibers (PF) were modified by mercerization under diverse conditions in terms of treatment time and concentration. The crystallographic structures and macromolecular properties, and surface extracted PF were all influenced by the modification process. Improvements in thermal properties were observed along with increases in the crystallite size, and degree of crystallinity as revealed by x-ray diffraction (XRD) analysis. FTIR spectroscopy confirmed partial removal of wax, lignin, and hemicellulose. Bulk density was also observed to change under treatment conditions, while Scanning electron microscope (SEM) imagery demonstrates how the treatment altered the surface of the PF. A considerable change in the macromolecular and structural characteristics of plantain fiber was observed under optimum treatment conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1115)

Pages:

63-70

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rokbi, M., Osmani, H., Imad, A., and Benseddi,q N. Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. procedia Engineering 10 (2011): 2092-2097.

DOI: 10.1016/j.proeng.2011.04.346

Google Scholar

[2] Bachtiar D, Sapuan S. M. and Hamdan M. M. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites," Mat. Desig .29 (2008)1285-1290.

DOI: 10.1016/j.matdes.2007.09.006

Google Scholar

[3] Yousif B. F., Shalwan A, Chin C. W and K. C. Ming. Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design. 40 (2012) 378-385.

DOI: 10.1016/j.matdes.2012.04.017

Google Scholar

[4] John M. J, and Thomas S. Biofibres and biocomposites. Carbohydrate Polymer. 71 (2008) 343–364.

DOI: 10.1016/j.carbpol.2007.05.040

Google Scholar

[5] Ramamoorthy, S. K., Skrifvars, M., and Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polymer reviews, 55(1) (2015) 107-162.

DOI: 10.1080/15583724.2014.971124

Google Scholar

[6] Imoisili, P. E., and Jen, T. C.. Mechanical and Acoustic Performance of Plantain (Musa Paradisiacal) Fibre Reinforced Epoxy Bio-Composite. Journal of Natural Fibers. (2022) 1-8.

DOI: 10.1080/15440478.2022.2036289

Google Scholar

[7] Kaith B. S. and Kalia S. Synthesis and characterization of graft co-polymers of flax fibre with binary vinyl monomers, Journal of. Polymer. Analysis. Characterization. 12 (2007) 401-412.

DOI: 10.1080/10236660701543676

Google Scholar

[8] Cao Y, Shibata S. and Fukumoto I. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkaline treatments. Composite Part A 37 (2006) 423-429.

DOI: 10.1016/j.compositesa.2005.05.045

Google Scholar

[9] Calado, V, Barreto, D. W, and D'almeida, J. R. M. The effect of a chemical treatment on the structure and morphology of coir fibers. Journal of material Science letters 19 (2000). 2151-2153.

Google Scholar

[10] Kaushik, V. K., Kumar, A., and Kalia, S. Effect of mercerization and benzoyl peroxide treatment on morphology, thermal stability and crystallinity of sisal fibers, International Journal of Textile Science. 1(6) (2012) 101-105.

DOI: 10.5923/j.textile.20120106.07

Google Scholar

[11] Li, Y., Hu, C. J., and Yu, Y. H. Interfacial studies of sisal fiber reinforced high density polyethylene composite. Compos. Part A, 39 (2008) 570-578.

DOI: 10.1016/j.compositesa.2007.07.005

Google Scholar

[12] Mishra, S., Misra, M., Tripathy, S. S., Nayak S. K., and Mohanty, A. K. Potentiality of pineapple leaf fibre as reinforcement in PALF-Polyester composite: surface modification and mechanical performance. J Reinf. Plast. Compos. 20(4), (2001) 321-334.

DOI: 10.1106/qwr6-32vv-k720-596d

Google Scholar

[13] Christian Emeka Okafor, Anthony Chinweuba Onovo, Patrick Ehi Imoisili, Kedar Madhusudan Kulkarni, Christopher Chukwutoo Ihueze. Optimal route to robust hybridization of banana-coir fibre particulate in polymer matrix for automotive applications. Materialia. (2021) 101098

DOI: 10.1016/j.mtla.2021.101098

Google Scholar

[14] Chimekwene, C. P., Fagbemi, E. A., and Ayeke, P. O. Mechanical properties of plantain empty fruit bunch fiber reinforced epoxy composite. International Journal of Research in Engineering, IT and Social Sciences, 2(6) (2012) 86-94.

Google Scholar

[15] Cadena Ch, E. M., Vélez R, J. M., Santa, J. F., and Otálvaro G, V. Natural fibers from plantain pseudostem (Musa paradisiaca) for use in fiber-reinforced composites. Journal of Natural Fibers, 14(5) (2017) 678-690.

DOI: 10.1080/15440478.2016.1266295

Google Scholar

[16] Imoisili, P. E., and Jen, T. C. Mechanical Properties of Polyester Resin Reinforced with Treated Plantain Pseudo Steam Fibers. Key Engineering Materials. 917 (2022) 32-37

DOI: 10.4028/p-bzxe78

Google Scholar

[17] Imoisili, P. E., and Jen, T. C. Mechanical and water absorption behavior of potassium permanganate (KMnO4) treated plantain (Musa Paradisiaca) fibre/epoxy bio-composites. J Mater Res Technol. 9(4) (2020). 8705–8713

DOI: 10.1016/j.jmrt.2020.05.121

Google Scholar

[18] Imoisili, P. E., Ukoba K. O., Jen T-C. Physical, Mechanical and Thermal Properties of High Frequency Microwave Treated Plantain (Musa Paradisiacal) Fibre/MWCNT Hybrid Epoxy Nanocomposites. J Mater Res Technol. 9(3) (2020) 4933-4939.

DOI: 10.1016/j.jmrt.2020.03.012

Google Scholar

[19] Patra, A., and Bisoyi D. K. Investigation of the electrical and mechanical properties of short sisal fibre-reinforced epoxy composite in correlation with structural parameters of the reinforced fibre," J Mater. Sci. 46 (2011) 7206–7213.

DOI: 10.1007/s10853-011-5676-4

Google Scholar

[20] Klemm D, Heublein B, Fink H. p. and Bohn A. Cellolose: Fascinating biopolymer and sustainable raw material. Angew Chem, Int. Ed. 44 (2005)3358–3393.

DOI: 10.1002/anie.200460587

Google Scholar

[21] Patra, A., Bisoyi Dillip K., Manda Prem K., Singh A. K. Effect of microwave radiation on the macromolecular, morphological and crystallographic structures of sisal fibre, Appl. Phys. A., 112 (2013) 1063–1071

DOI: 10.1007/s00339-012-7489-y

Google Scholar

[22] Esmeraldo M. A, Barreto A. C. H, Freitas J. E. B, Fechine P. B. A. Sombra A. S. B., Corradini E., Mele G., Maffezzoli A. and Mazzetto S. E. Dwarf-green coconut fibres: versatile natural renewable raw bioresource. Treatment morphology and physicochemical properties. BioResources. 5, (2010). 478–501.

DOI: 10.15376/biores.5.4.2478-2501

Google Scholar

[23] Barreto A. C. H., Rosa, D. S, Fechine P. B. A., and Mazzetto, S. E. Properties of sisal fibers treated by Alkaline solution and their application into cardanol-based biocomposites, Compos. Part A. 42 (2011)492–500.

DOI: 10.1016/j.compositesa.2011.01.008

Google Scholar

[24] Ouajai S. and Shanks R. A. (2005). "Composition, structure and thermal degradation of hemp cellulose after chemical treatments," Polym Degrad. Stabil. 89, 327–335.

DOI: 10.1016/j.polymdegradstab.2005.01.016

Google Scholar

[25] Imoisili P. E., Jen T-C. Modelling and Optimization of the Impact Strength of Plantain (Musa Paradisiacal) Fibre/MWCNT Hybrid Nanocomposite Using Response Surface Methodology. J Mater Res Technol. 13 (2021) 1946-1954

DOI: 10.1016/j.jmrt.2021.05.101

Google Scholar