New Approaches to 3D Non-Crimp Fabric Manufacturing

Article Preview

Abstract:

Textile reinforcements have outstanding load-bearing capabilities due to the excellent tensile properties of high performance multifilament yarns (e.g. carbon fibers). However, in order to take full advantage of their high potential, it is necessary to ensure that the filaments run in a straight line. In order to guarantee this straight filament course, the highly efficient multiaxial warp knitting process is used for the production of 2D non-crimp fabrics (NCF) as textile preforms. In various industrial applications, most structures have complex 3D geometries. Therefore, the 2D textile needs to be shaped for reinforcement, which often results in a rearrangement of the filament orientation. Consequently, the 3D shaping process has to be taken into account during the textile production or in the shaping process itself in order to guarantee the highest mechanical properties. Using the example of lattice girders for concrete reinforcement, a new approach for the fabrication of 3D textile lattice girders in a continous shaping process is presented. The results of the production tests of the developed technology approach show no apparent filament damage and exact roving orientation with no inadvertent deflection, compression or bulging, indicating a precise and gentle shaping process. The developed technology contributes to the future reduction of the production costs of 3D textile reinforcements.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1117)

Pages:

37-46

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Automotive Manufacturing Solutions: Thinking outside the box: lightweight battery enclosures. URL https://www.automotivemanufacturingsolutions.com/ev-battery-production/thinking-outside-the-box-lightweight-battery-enclosures/42124.article, accessed on: 11.10.23

Google Scholar

[2] Flemming, M.; Ziegmann, G.; Roth, S.: Faserverbundbauweisen: Halbzeuge und Bauweisen. Berlin, Heidelberg: Springer Berlin Heidelberg, (1996)

DOI: 10.1007/978-3-642-61432-3_4

Google Scholar

[3] Howell, E.; Geyer, C.: Interview with Christoph Geyer. In: Reinforced Plastics 63 (2019), Nr. 2, S. 76–78

DOI: 10.1016/j.repl.2017.12.070

Google Scholar

[4] Kroll, L. (Hrsg.): Technologiefusion für multifunktionale Leichtbaustrukturen: Ressourceneffizienz durch die Schlüsseltechnologie "Leichtbau". Berlin, Germany: Springer Vieweg, (2019)

DOI: 10.1007/978-3-662-54734-2

Google Scholar

[5] Minsch, N.; Nosrat-Nezami, F.; Gereke, T.; Cherif, C.: Review on Recent Composite Gripper Concepts for Automotive Manufacturing. In: Procedia CIRP 50 (2016), S. 678–682

DOI: 10.1016/j.procir.2016.04.175

Google Scholar

[6] Minsch, N.; Müller, M.; Gereke, T.; Nocke, A.; Cherif, C.: 3D truss structures with coreless 3D filament winding technology. In: Journal of Composite Materials 53 (2019), Nr. 15, S. 2077–2089

DOI: 10.1177/0021998318820583

Google Scholar

[7] Abounaim, M.; Cherif, Chokri: Flat-knitted innovative three-dimensional spacer fabrics: a competitive solution for lightweight composite applications. In: Textile Research Journal 82 (2012), Nr. 3, S. 288–298

DOI: 10.1177/0040517511426609

Google Scholar

[8] Pfeiffer, J.: Leichtbau-Batteriepack verringert Gewicht und erhöht Reichweite von E-Autos. URL www.konstruktionspraxis.vogel.de/leichtbau-batteriepack-verringert-gewicht-und-erhoeht-reichweite-von-e-autos-a-974846/, accessed on: 11.10.23

Google Scholar

[9] Mohammed, L.; Ansari, M. N. M.; Pua, G.; Jawaid, M.; Islam, M. S.: A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. In: International Journal of Polymer Science 2015 (2015), S. 1–15

DOI: 10.1155/2015/243947

Google Scholar

[10] Cherif, C. (Hrsg.): Textile materials for lightweight constructions: Technologies - methods - materials - properties. Berlin and Heidelberg and New York and Dordrecht and London: Springer, 2016 (Textile Materials for Lightweight Constructions)

DOI: 10.1007/978-3-662-46341-3

Google Scholar

[11] Mohammadi, H.; Ahmad, Z.; Mazlan, S. A.; Faizal Johari, M. Aidy; Siebert, G.; Petrů, M.; Rahimian Koloor, S. S.: Lightweight Glass Fiber-Reinforced Polymer Composite for Automotive Bumper Applications: A Review. In: Polymers 15 (2022), Nr. 1

DOI: 10.3390/polym15010193

Google Scholar

[12] Hohmann, A.: Ökobilanzielle Untersuchung von Herstellungsverfahren für CFK-Strukturen zur Identifikation von Optimierungspotentialen: Systematische Methodik zur Abschätzung der Umweltwirkungen von Fertigungsprozessketten. München. PhD thesis. (2019)

Google Scholar

[13] Krieger, H.; Gries, T.; Stapleton, S. E.: Design of Tailored Non-Crimp Fabrics Based on Stitching Geometry. In: Applied Composite Materials 25 (2018), Nr. 1, S. 113–127

DOI: 10.1007/s10443-017-9603-y

Google Scholar

[14] Lässig, R.; Eisenhut, M.; Mathias, A.; Schulte, R. T.; Peters, F.; Kühmann, T.; Waldmann, T.; Begemann, W.: Serienproduktion von hochfesten Faserverbundbauteilen: Perspektiven für den deutschen Maschinen- und Anlagenbau. In: Roland Berger Strategy Consultants (2012)

Google Scholar

[15] Yang, C.; Nanni, A.; Dharani, L.: Effect of fiber misalignment on FRP laminates and strengthened concrete beams. In: 9th Int. Conf., Structural Faults and Repair, London, UK, (2001)

Google Scholar

[16] Schürmann, H.: Konstruieren Mit Faser-Kunststoff-Verbunden. 2nd. Berlin: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2008 (VDI-Buch)

DOI: 10.1007/978-3-540-72190-1_14

Google Scholar

[17] Nezami, F.: Automatisiertes Preforming von Kohlefaserhalbzeugen mit aktiven Materialführungssystemen zur Herstellung komplexer Faserverbundstrukturen. Dresden, Technische Universität Dresden. PhD thesis. (2015)

Google Scholar

[18] Friese, D.; Scheurer, M.; Hahn, L.; Gries, T.; Cherif, C.: Textile reinforcement structures for concrete construction applications‐‐a review. In: Journal of Composite Materials 56 (2022), Nr. 26, S. 4041–4064

DOI: 10.1177/00219983221127181

Google Scholar

[19] Albrecht, S.; Drechsler, K.; Hohmann, A.; Leistner, P.; Lindner, J. P.; Voringer, B.; Wehner, D.: Resource efficiency and environmental impact of fiber reinforced plastic processing technologies. In: Production Engineering 12 (2018), 3-4, S. 405–417

DOI: 10.1007/s11740-018-0802-7

Google Scholar

[20] Hahn, L.: Prototype of a production technology for highly efficient manufacturing of performed textile. (ITMA 2019, spakers corner). Barcelona (Spain), 20.-26.06.(2019)

Google Scholar

[21] Harrison, P. ; Yu, W-R. ; Long, A. C.: Modelling the deformability of biaxial non-crimp fabric composites. Elsevier, (2011)

DOI: 10.1533/9780857092533.2.144

Google Scholar

[22] Horrocks, A. Richard; Anand, Subhash C.: Handbook of technical textiles. Amsterdam, Netherlands: Woodhead Publishing in association with The Textile Institute, 2016 (Woodhead Publishing Series in Textiles Ser v.1)

DOI: 10.1016/b978-1-78242-458-1.09989-1

Google Scholar

[23] Hu, Jinlian (Hrsg.): 3-D fibrous assemblies: Properties, applications and modeling of three-dimensional textile structures. Cambridge, England and Boca Raton, FL: Woodhead Pub. in association with the Textile Institute, 2008 (Woodhead publishing in textiles no. 74)

DOI: 10.1016/b978-1-84569-377-0.50012-6

Google Scholar

[24] Krieger, H.; Gries, T.; Stapleton, S. E.: Shear and drape behavior of non-crimp fabrics based on stitching geometry. In: International Journal of Material Forming 11 (2018), Nr. 5, S. 593–605

DOI: 10.1007/s12289-017-1368-1

Google Scholar

[25] Schnabel, A.; Gries, T.: Production of non-crimp fabrics for composites. In: Non-Crimp Fabric Composites : Elsevier, 2011, S. 3–41

DOI: 10.1533/9780857092533.1.3

Google Scholar

[26] Sankaran, V.: Development of a novel multiaxial warp knitting based technology for production of 3D near net shape preforms. Technische Universität Dresden and Verlag Dr. Hut. PhD thesis

Google Scholar

[27] Hahn, L.; Zierold, K.; Golla, A.; Friese, D.; Rittner, S.: 3D textiles based on warp knitted three-dimensional fabrics: A review. In: Materials 16 (2023), Nr. 3680

DOI: 10.3390/ma16103680

Google Scholar

[28] Sankaran, V.; Cherif, C.: New Machine Concept for Producing 3-D Stitch-Bonded Fabrics. In: Fibres & Textiles in Eastern Europe Nr 1 (97) (2013)

Google Scholar

[29] Zierold, K.; Steinberg, J.; Hahn, L.; Rittner, S.; Friese, D.; Cherif, C.: Development of a method and technology for the production of 3D knitted reinforcement grids. In: Fibres & Textiles in Eastern Europe 151 (2022), Nr. 3, S. 18–26

DOI: 10.2478/ftee-2022-0018

Google Scholar

[30] Teijin Carbon Europe GmbH: Tenax Filament Yarn. Datasheet. URL https://www.teijincarbon.com/de/produkte/tenaxr-kohlenstofffaser/tenaxr-filamentgarn, accessed on: 26.05.23

Google Scholar

[31] Michler, H.: Gitterträger für Betontragwerke. Technische Universität Dresden, 01069, Dresden, DE. Registration number. 102016124226, Germany

DOI: 10.25368/2020.31

Google Scholar

[32] Deutsches Institut für Bautechnik (DIBt): CARBOrefit® - Verfahren zur Verstärkung von Stahlbeton mit Carbonbeton, Z -31.10-182, Period of validity since (2014)

Google Scholar

[33] CHT Germany GmbH: TECOSIT CC 1000. Datasheet. URL https://solutions.cht.com/cht/web.nsf/id/pa_tecosit-filmformers.html, accessed on: 11.10.23

Google Scholar

[34] Hahn, L.; Rittner, S.; Nuss, D.; Ashir, M.; Cherif, C.: Development of Methods to Improve the Mechanical Performance of Coated Grid-Like Non-Crimp Fabrics for Construction Applications. In: Fibres and Textiles in Eastern Europe 27 (2019), 1(133), S. 51–58

DOI: 10.5604/01.3001.0012.7508

Google Scholar

[35] Assing, H.; Borgwardt, H.; Stahl, A.: Von der COPRO-Technologie zum Hybridrollformprozess. In: Symposium Hybrider Leichtbau 2016.

Google Scholar

[36] Friese, D.; Hahn, L.; Cherif, C.: Biologically Inspiried Load Adapted 3D Textile Reinforcement Structures. In: Materials Science Forum 1063 (2022), S. 101–110

DOI: 10.4028/p-8oa718

Google Scholar