Effects of Gamma Irradiation on the Tensile Properties of 3D-Printed Polycarbonate Acrylonitrile Butadiene Styrene

Article Preview

Abstract:

3D printing is now being applied in various research areas due to its ability to produce highly complex parts whenever needed. This is highly helpful in the fields of robotics; radiation environment monitoring and space applications where stand-alone equipment are usually required. In this work, FDM 3D-printed polycarbonate acrylonitrile butadiene styrene (PCABS) samples were subjected to 1 kGy to 9 kGy of gamma irradiation from a Cobalt-60 irradiator. Parameters such as infill density and dose rate were modified to determine the best setting to improve the mechanical characteristics of the 3D-printed thermoplastic. Results show that samples with lower infill density obtain higher ultimate strength when exposed to higher doses of radiation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1118)

Pages:

93-98

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Huber, M. Mirzaee, J. Bjorgaard, M. Hoyack, S. Noghanian, and I. Chang, "Dielectric property measurement of PLA," IEEE Int. Conf. Electro Inf. Technol., vol. 2016-Augus, p.788–792, 2016.

DOI: 10.1109/EIT.2016.7535340

Google Scholar

[2] L. D. Tijing, J. R. C. Dizon, I. Ibrahim, A. R. N. Nisay, H. K. Shon, and R. C. Advincula, "3D printing for membrane separation, desalination and water treatment," Appl. Mater. Today, vol. 18, p.100486, 2020.

DOI: 10.1016/j.apmt.2019.100486

Google Scholar

[3] J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, "Mechanical characterization of 3D-printed polymers," Addit. Manuf., vol. 20, no. January 2018, p.44–67, 2018.

DOI: 10.1016/j.addma.2017.12.002

Google Scholar

[4] R. N. M. Delda, R. B. Basuel, R. P. Hacla, D. W. C. Martinez, J.-J. Cabibihan, and J. R. C. Dizon, "3D Printing Polymeric Materials for Robots with Embedded Systems," Technologies, vol. 9, no. 4, p.82, 2021.

DOI: 10.3390/technologies9040082

Google Scholar

[5] R. N. M. Delda, B. J. Tuazon, and J. R. C. Dizon, "Assessment of interfacial adhesion of adhesively bonded 3d-printed thermoplastics," Mater. Sci. Forum, vol. 1005 MSF, no. November, p.157–165, 2020.

DOI: 10.4028/www.scientific.net/MSF.1005.157

Google Scholar

[6] P. Wady et al., "Effect of ionising radiation on the mechanical and structural properties of 3D printed plastics," Addit. Manuf., vol. 31, no. April 2019, p.100907, 2020.

DOI: 10.1016/j.addma.2019.100907

Google Scholar

[7] C. West, R. McTaggart, T. Letcher, D. Raynie, and R. Roy, "Effects of gamma irradiation upon the mechanical and chemical properties of 3D-printed samples of polylactic acid," J. Manuf. Sci. Eng. Trans. ASME, vol. 141, no. 4, 2019.

DOI: 10.1115/1.4042581

Google Scholar

[8] L. F. De Magalhães Brito and D. Magagna, "Sanitation," Clin. Eng. Handb., no. Division I, p.532–546, 2004.

DOI: 10.1016/B978-012226570-9/50125-3

Google Scholar

[9] J. R. Richter, B. B. Kasten, and K. R. Zinn, Imaging and Adenoviral Gene Therapy, Second Edi. Elsevier Inc., 2016.

Google Scholar

[10] N. H. Harley, Health effects of radiation and radioactive materials. 2008.

Google Scholar

[11] J. A. Pickrell, "Radiation and Health Effects," Handb. Toxicol. Chem. Warf. Agents Second Ed., p.431–446, 2015.

DOI: 10.1016/B978-0-12-800159-2.00032-4

Google Scholar

[12] D. E. Weiss and R. J. Stangeland, "Dose prediction and process optimization in a gamma sterilization facility using 3-D Monte Carlo code," Radiat. Phys. Chem., vol. 68, no. 6, p.947–958, 2003.

DOI: 10.1016/j.radphyschem.2003.09.001

Google Scholar

[13] M. Bailey, J. P. Sephton, and P. H. G. Sharpe, "Monte Carlo modelling and real-time dosemeter measurements of dose rate distribution at a 60Co industrial irradiation plant," Radiat. Phys. Chem., vol. 78, no. 7–8, p.453–456, 2009.

DOI: 10.1016/j.radphyschem.2009.03.024

Google Scholar

[14] Q. Sun, G. M. Rizvi, C. T. Bellehumeur, and P. Gu, "Effect of processing conditions on the bonding quality of FDM polymer filaments," Rapid Prototyp. J., vol. 14, no. 2, p.72–80, 2008.

DOI: 10.1108/13552540810862028

Google Scholar

[15] S. Shaffer, K. Yang, J. Vargas, M. A. Di Prima, and W. Voit, "On reducing anisotropy in 3D printed polymers via ionizing radiation," Polymer (Guildf)., vol. 55, no. 23, p.5969–5979, 2014.

DOI: 10.1016/j.polymer.2014.07.054

Google Scholar

[16] T. N. Bowmer, L. K. Cowen, J. H. O'Donnell, and D. J. Winzor, "Degradation of polystyrene by gamma irradiation: Effect of air on the radiation‐induced changes in mechanical and molecular properties," J. Appl. Polym. Sci., vol. 24, no. 2, p.425–439, 1979.

DOI: 10.1002/app.1979.070240211

Google Scholar

[17] K. T. Gillen, J. S. Wallace, and R. L. Clough, "Dose-rate dependence of the radiation- induced discoloration of polystyrene," Radiat. Phys. Chem., vol. 41, no. 1–2, p.101–113, 1993.

DOI: 10.1016/0969-806X(93)90046-W

Google Scholar

[18] "Z-PCABS-Strong Resistance Filament for 3D Printing". Zortrax. https://zortrax.com/filaments/z-pcabs/ (accessed Feb. 5, 2023)

Google Scholar

[19] S. S. Cota, V. Vasconcelos, M. Senne, L. L. Carvalho, D. B. Rezende, and R. F. Correa, "Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE)," Brazilian J. Chem. Eng., vol. 24, no. 2, p.259–265, 2007, doi: 10.1590/S0104- 66322007000200010.

DOI: 10.1590/s0104-66322007000200010

Google Scholar