Influence of Electrolyte Concentration on the Electrochemical Behavior of Copper Hexacyanoferrate as an Active Material for Zinc-Ion Batteries

Article Preview

Abstract:

This study investigates the impact of electrolyte concentration on the electrochemical behavior of copper hexacyanoferrate (CuHCF), a promising active material for aqueous zinc-ion battery electrodes. Cyclic voltammetry, charge-discharge measurements, and X-ray diffraction analysis were employed to assess the electrochemical reactions and structural integrity of the CuHCF electrode under varying electrolyte concentrations. The results revealed a significant influence of electrolyte concentration on the electrochemical performance of the CuHCF electrode. Specifically, the charge-discharge capacity exhibited an initial increase as the electrolyte concentration increased from 1.0 to 2.0 mol dm‒3, followed by a subsequent decrease. This decrease in capacity was attributed to the occurrence of an electrode/electrolyte interfacial reaction in the low-potential region of 0.0–0.3 V, coupled with structural changes in the CuHCF active material. Notably, these findings underscore the strong correlation between the electrochemical performance of the CuHCF electrode and the hydration structure of zinc ions, as well as the pH of the electrolyte solution. Thus, optimizing the electrolyte composition holds significant potential for enhancing the performance of aqueous zinc-ion batteries employing CuHCF electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1119)

Pages:

25-30

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li, Z. Huang, and C. Zhi, Voltage issue of aqueous rechargeable metal-ion batteries, Green Energy & Environ. 3 (2020) pp.180-232.

DOI: 10.1039/c9cs00131j

Google Scholar

[2] Q. Liu, Z. Pan, E. Wang, L. An, and G. Sun, Aqueous metal-air batteries: Fundamentals and applications, Green Energy & Environ. 3 (2020) pp.478-505.

Google Scholar

[3] J. Liu, C. Xu, Z. Chen, S. Ni, and Z. X. Shen, Progress in aqueous rechargeable batteries, Green Energy & Environ. 1(3) (2018) pp.20-41.

Google Scholar

[4] J.O.G. Posada, A.J.R. Rennie, S. Villar, V. L. Martins, J. Marinaccio, A. Barnes, C. F. Glover, D.A. Worsley, and P.J. Hall, Aqueous batteries as grid scale energy storage solutions, Renew. Sust. Energ. 2 (2017) pp.1174-1182.

DOI: 10.1016/j.rser.2016.02.024

Google Scholar

[5] J. O. G. Posada and P. J. Hall, Multivariate investigation of parameters in the development and improvement of NiFe cells, J. Power Sources 262 (2014) pp.263-269.

DOI: 10.1016/j.jpowsour.2014.03.145

Google Scholar

[6] X. Jia, C. Liu, Z. G. Neale, J. Yang, and G. Cao, Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry, Chem. Rev. 4 (2020) pp.7795-7866.

DOI: 10.1021/acs.chemrev.9b00628

Google Scholar

[7] G. Fang, J. Zhou, A. Pan, and S. Liang, Recent advances in aqueous zinc-ion batteries, Green ACS Energy Lett. 3 (2018) pp.2480-2501.

DOI: 10.1021/acsenergylett.8b01426

Google Scholar

[8] F. Grandjean, L. Samainb, and G. J. Long, Characterization and utilization of Prussian blue and its pigments, Dalton Trans. (2016) pp.18018-18044.

DOI: 10.1039/c6dt03351b

Google Scholar

[9] P. Nie, L. Shen, H. Luo, B. Ding, G. Xu, J. Wang, and X. Zhang, Prussian blue analogues: A new class of anode materials for lithium-ion batteries, J. Mater. Chem. A2 (2014) pp.5852-5857.

DOI: 10.1039/c4ta00062e

Google Scholar

[10] S. Wheeler, I. Capone, S. Day, C. Tang, and M. Pasta, Low-potential Prussian blue analogues for sodium-ion batteries: Manganese hexacyanochromate, Chem. Mater. 31 (2019) pp.2619-2626.

DOI: 10.1021/acs.chemmater.9b00471

Google Scholar

[11] C. Lee and S. -K. Jeong, Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries, Electrochim. Acta 265 (2018) pp.430-436.

DOI: 10.1016/j.electacta.2018.01.172

Google Scholar

[12] C. Lee and S. -K. Jeong, A Novel Superconcentrated aqueous electrolyte to improve the electrochemical performance of calcium-ion batteries, Chem. Lett. 45 (2016) pp.2619-2626.

DOI: 10.1246/cl.160769

Google Scholar

[13] K. Hurlbutt, S. Wheeler, I. Capone, and M. Pasta, Prussian blue analogs as battery materials, Joule 2 (2018) pp.1950-1960.

DOI: 10.1016/j.joule.2018.07.017

Google Scholar

[14] H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, The crystal structure of Prussian blue: Fe4[Fe (CN)6]3·xH2O, Inorg. Chem. 16 (2018) pp.2704-2710.

DOI: 10.1021/ic50177a008

Google Scholar