Influence of Friction Conditions and Structural Refining on the Tribological Behavior of Titanium

Article Preview

Abstract:

Titanium and its alloys have a wide range of applications in various industries, including medicine. However, the low strength and high friction coefficient hinder their development in contact friction due to fretting fatigue. Among many factors, structure refinement, temperature and amplitude are the most responsible for fretting wear of structural materials. The purpose of the article is to investigate the effect of displacement amplitude, size of grain and test temperature on the fretting wear of the pure titanium in coarse-grained and ultrafine-grained states. It is shown that an increase in the test temperature for both structural states leads to a multiple increase in wear. Structural refinement of titanium to hundreds of nanometers helps to reduce wear at room and elevated temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1120)

Pages:

3-9

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.B. Waterhouse, Fretting wear, Wear. 100 (1984) 107-118.

DOI: 10.1016/0043-1648(84)90008-5

Google Scholar

[2] R.B. Waterhouse, Fretting Corrosion, Pergamon, Oxford, 1972.

Google Scholar

[3] S. Shouyi, L. Li, Z. Yue et al., Fretting fatigue failure behavior of Nickel-based single crystal superalloy dovetail specimen in contact with powder metallurgy pads at high temperature, Tribology International. 142 (2020) Article 105986.

DOI: 10.1016/j.triboint.2019.105986

Google Scholar

[4] D. Croccolo, M. De Agostinis, S. Fini, et al., Fretting fatigue in mechanical joints: A Literature Review, Lubricants. 10 (4) (2022) 53.

DOI: 10.3390/lubricants10040053

Google Scholar

[5] A. Zabala, А. Aginagalde, W. Tato et al. Critical analysis of coefficient of friction derivation methods for fretting under gross slip regime, Tribology Inter. 142 (2020) Article 105988.

DOI: 10.1016/j.triboint.2019.105988

Google Scholar

[6] J. Wang, D. Duan, W. Xue, S. Gao, S. Li, Ti-6Al-4V fretting wear and a quantitative indicator for fretting regime evaluation, Proc. Inst. of Mech. Eng., Part J: J. Eng. Tribology. 235 (2021) 423-433.

DOI: 10.1177/1350650120933115

Google Scholar

[7] A. Wade, R. Copley, А.А. Omar et al., Novel numerical method for parameterising fretting contacts, Tribology Inter. 142 (2020) Article 105826.

DOI: 10.1016/j.triboint.2019.06.019

Google Scholar

[8] H. Liu, X. Shao, K. Tan, et al., Microstructural evolution and oxidation in α/β titanium alloy under fretting fatigue loading. Friction (2023).

DOI: 10.1007/s40544-022-0729-z

Google Scholar

[9] M. Lavella, D. Botto, Fretting wear of alloy steels at the blade tip of steam turbines, Wear. 426-427 (2019) 735–740.

DOI: 10.1016/j.wear.2019.01.039

Google Scholar

[10] P.J. Blau, A microstructure-based wear model for grid-to-rod fretting of clad nuclear fuel rods, Wear. 426-427 (2019) 750–759.

DOI: 10.1016/j.wear.2019.01.056

Google Scholar

[11] A. Siddaiah, A.K. Kasar, V. Khosla, P.L. Menezes, In-situ fretting wear analysis of electrical connectors for real system applications, J. Manuf. Mater. Process. 3 (2019) 47.

DOI: 10.3390/jmmp3020047

Google Scholar

[12] J. Ke, X.B. Liu, J. Liang, L. Liang, Y.S. Luo, Microstructure and fretting wear of laser cladding self-lubricating anti-wear composite coatings on TA2 alloy after aging treatment. Opt. Laser. Technol. 119 (2019) 105599.

DOI: 10.1016/j.optlastec.2019.105599

Google Scholar

[13] G. Wang, S. Wang, X. Yang, et al., Fretting wear and mechanical properties of surface-nanostructural titanium alloy bone plate, Surface and Coatings Technology. 405 (2021) 126512.

DOI: 10.1016/j.surfcoat.2020.126512

Google Scholar

[14] Xu, Z.; Hu, N.; Lu, Y.; Xu,X. Effects of multi-axial compression on the mechanical and fretting wear properties of biocompatible Ti-45Nb alloys, Metals. 11 (2021) 454.

DOI: 10.3390/met11030454

Google Scholar

[15] A.A. Misochenko, S.V. Chertovskikh, L.S. Shuster, V.V. Stolyarov, Influence of grain size and contact temperature on the tribological behaviour of shape memory Ti49.3Ni50.7 alloy, Tribology Letters, 65, (2017) 131

DOI: 10.1007/s11249-017-0917-6

Google Scholar

[16] D.R. Barjaktarević, V.R. Djokić, J.B. Bajat, I.D. Dimić, I.L. Cvijović-Alagić, M.P. Rakin, The influence of the surface nanostructured modification on the corrosion resistance of the ultrafine-grained Ti–13Nb–13Zr alloy in artificial saliva, Theoretical and Applied Fracture Mechanics. 103 (2019) 102307.

DOI: 10.1016/j.tafmec.2019.102307

Google Scholar

[17] J.E. Mogonye, T.W. Scharf, Tribological properties and mechanisms of self-mated ultrafine-grained titanium, Wear. 376–377 (2017) 931-939.

DOI: 10.1016/j.wear.2016.10.016

Google Scholar

[18] M. Pakhomov, D. Gorlov, V. Stolyarov, Features of wear and friction in titanium, IOP Conf. Series: Mater. Sci. Eng., 996 (2020) 012017.

DOI: 10.1088/1757-899x/996/1/012017

Google Scholar

[19] S. Kodirov, R.Z Valiev, G.I Raab, G.N Aleshin and A.G. Raab Structural features and mechanical properties of Grade 4 titanium from VSMPO-AVISMA (Russia) and Grade 4 titanium from Carpenter Technology Corporation (USA), subjected to ECAP-Conform 2019 IOP Conf. Ser.: Mater. Sci. Eng. 672 012016.

DOI: 10.1088/1757-899x/672/1/012016

Google Scholar

[20] A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu, Corrosion resistance of ultrafine-grained Ti, Scripta Materialia, 51 (2004) 225-229.

DOI: 10.1016/s1359-6462(04)00235-0

Google Scholar

[21] L.M. Qian, Q.P. Sun, Z.R. Zhou, Fretting wear behavior of NiTi alloy, Tribology Letters, 18 (2005) 463-475.

DOI: 10.1007/s11249-005-3606-9

Google Scholar

[22] Z.R. Zhou, L. Vincent, Mixed fretting regime, 181-183 (part-P2) (1995) 531–536.

DOI: 10.1016/0043-1648(95)90168-x

Google Scholar