Hardness and Microstructure of TiN Coating on Aluminum Alloy with DC Sputtering

Article Preview

Abstract:

Titanium Nitride coating has attracted much interest in increasing the hardness of aluminum alloys. This study aims to investigate the effect of Ar: N gas mixture and time on increasing the hardness of aluminum alloys using DC sputtering. Preparation of TiN thin films on aluminum alloy substrates using flowing gas mixture parameters and time. First, the layer of TiN was deposited on the sample with a gas mixture of 90Ar:10N; 80Ar:20N; 70Ar:30N; and 60Ar:40N (%) for 60 minutes. Then the optimum gas mixture that produces the highest surface hardness is used in the second process with time variations of 30, 60, 90, and 120 minutes. The results showed that the highest hardness was achieved in a gas mixture of 70Ar:30N and 60 minutes. The TiN phase formed on the aluminum surface was identified by XRD, while the surface morphology was observed by SEM. Compared with untreated samples, the hardness of treated samples increased significantly.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1122)

Pages:

11-18

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. W. B. Riyadi, T. Tjahjono, Sarjito, Margono, Suprapto, and T. Sujitno, "Wear and Corrosion Resistance of Aluminium Nitride Produced by DC Glow Discharge," Adv. Sci. Lett., vol. 53, no. 9, p.1689–1699, 2018.

DOI: 10.1166/asl.2018.12080

Google Scholar

[2] T. Tjahjono, T. W. B. Riyadi, B. W. Febriantoko, Margono, Suprapto, and T. Sujitno, "Hardness optimization based on nitriding time and gas pressure in the plasma nitriding of aluminium alloys," Mater. Sci. Forum, vol. 961 MSF, p.112–117, 2019.

DOI: 10.4028/www.scientific.net/msf.961.112

Google Scholar

[3] Zuliantoni, W. Suprapto, P. H. Setyarini, and F. Gapsari, "Hydroxyapatite Effect on the Corrosion Rate of AMC Al-Zn by Powder Metallurgy," Key Eng. Mater., vol. 935, no. 9, p.41–48, 2022.

DOI: 10.4028/p-613s0t

Google Scholar

[4] V. N, H. N. Chamidy, A. Ngatin, A. Fitriani, and R. Arisya, "Effect Of Voltage On The Thickness Of Oxide Layer At Aluminum Alloys For Structural Bonding Using Phosphoric Sulfuric Acid Anodizing ( PSA ) Process," Int. J. Mech. Eng. Technol. Appl., vol. 4, no. 1, p.69–76, 2023.

DOI: 10.21776/mechta.2023.004.01.8

Google Scholar

[5] F. Zhang, M. Yan, F. Yin, Y. Wang, Y. Zhang, and J. He, "Influence of plasma nitriding temperature on microstructures and mechanical properties of Ti-N/Ti-Al multilayer coatings on the surface of 5083 Al alloys," Surf. Coat. Technol., 2017.

DOI: 10.1016/j.surfcoat.2017.12.031

Google Scholar

[6] D. Aruri, K. Adepu, K. Adepu, and K. Bazavada, "Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing," J. Mater. Res. Technol., vol. 2, no. 4, p.362–369, 2013.

DOI: 10.1016/j.jmrt.2013.10.004

Google Scholar

[7] M. Karthikeyan, A. Devaraju, and R. Gopi, "Investigations on mechanical properties of aluminium alloy Al6061 hybrid metal matrix composite," Mater. Today Proc., vol. 68, p.1504–1507, 2022.

DOI: 10.1016/j.matpr.2022.07.130

Google Scholar

[8] K. Das et al., "Effect of Pre-treatment and Duration of Pulse Plasma Nitriding on Duplex Plasma Treatment by Physical Vapor Deposition of TiN on AISI D2 Steel," J. Mater. Eng. Perform., vol. 3, no. January, p.1059–9495, 2022.

DOI: 10.1007/s11665-022-07776-3

Google Scholar

[9] Y. Chen, L. Zhang, J. F. Zhu, Z. Q. Zhong, and J. H. Gu, "Cohesive failure and film adhesion of PVD coating: Cemented carbide substrate phase effect and its micro-mechanism," Int. J. Refract. Met. Hard Mater., vol. 111, no. August 2022, p.106066, 2023.

DOI: 10.1016/j.ijrmhm.2022.106066

Google Scholar

[10] M. Noori et al., "Nanostructured multilayer CAE-PVD coatings based on transition metal nitrides on Ti6Al4V alloy for biomedical applications," Ceram. Int., vol. 49, no. 14, p.23367–23382, 2023.

DOI: 10.1016/j.ceramint.2023.04.169

Google Scholar

[11] W. Andriyanti, T. Sujitno, Suprapto, and M. L. Rasyidi, "Titanium nitride (TiN) deposition on the surface of Al-5083 using DC sputtering method to improve its hardness and wear resistance," AIP Conf. Proc., vol. 2381, no. November, 2021.

DOI: 10.1063/5.0066548

Google Scholar

[12] A. K. Bard and Q. A. Abbas, "Optik Influence of cylindrical magnetron sputtering configurations on plasma characteristics," Optik (Stuttg)., vol. 272, no. December 2022, p.170346, 2023.

DOI: 10.1016/j.ijleo.2022.170346

Google Scholar

[13] F. Sun et al., "Duplex treatment of arc plasma nitriding and PVD TiN coating applied to dental implant screws," Surf. Coatings Technol., vol. 439, no. April, 2022.

DOI: 10.1016/j.surfcoat.2022.128449

Google Scholar

[14] Margono, B. H. Priyambodo, K. C. Nugroho, T. Sujitno, and Suprapto, "Hardness and Wear Properties of Al-TiN Coatings Produced by DC Sputtering," Mater. Sci. Forum, vol. 1051, p.147–152, 2022.

DOI: 10.4028/www.scientific.net/msf.1051.147

Google Scholar

[15] A. Ghailane et al., "Titanium nitride, TiXN(1−X), coatings deposited by HiPIMS for corrosion resistance and wear protection properties," Appl. Surf. Sci., vol. 574, no. October 2021, 2022.

DOI: 10.1016/j.apsusc.2021.151635

Google Scholar

[16] F. Zhang, S. Yan, F. Yin, and J. He, "Microstructures and mechanical properties of Ti–Cr–N/Al–Ti–Cr based coatings prepared by plasma nitriding 5083 Al alloys co-deposited with Ti–Cr films," Vacuum, vol. 157, no. August, p.115–123, 2018.

DOI: 10.1016/j.vacuum.2018.08.039

Google Scholar

[17] E. P. A. Azizpour, "Fracture and deformation mechanism of Ti(C,N)/TiAlSiN multilayer coating: FE modeling and experiments," Ceram. Int. J., vol. 43, no. October 2016, p.1–11, 2017.

DOI: 10.1016/j.ceramint.2016.10.141

Google Scholar

[18] J. Lee and T. Tanaka, "Wear resistant super-hard multilayer transition metal-nitride coatings," Surfaces and Interfaces, vol. 2, no. 9, p.2–10, 2017.

DOI: 10.1016/j.surfin.2017.03.001

Google Scholar

[19] T. Wang, Y. Jin, L. Bai, and G. Zhang, "Structure and properties of NbN/MoN nano-multilayer coatings deposited by magnetron sputtering," J. Alloys Compd., vol. 729, no. 9, p.942–948, 2017.

DOI: 10.1016/j.jallcom.2017.09.218

Google Scholar

[20] X. Sui, J. Liu, S. Zhang, J. Yang, and J. Hao, "Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance," Appl. Surf. Sci., vol. 439, no. 1, p.24–32, 2018.

DOI: 10.1016/j.apsusc.2017.12.266

Google Scholar

[21] C. Lu et al., "A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy," Appl. Surf. Sci., vol. 431, no. 9, p.32–38, 2018.

DOI: 10.1016/j.apsusc.2017.09.082

Google Scholar

[22] M. Kumar, S. Mishra, and R. Mitra, "Effect of Ar : N2 ratio on structure and properties of Ni – TiN nanocomposite thin films processed by reactive RF/DC magnetron sputtering," Surf. Coat. Technol., vol. 228, p.100–114, 2013.

DOI: 10.1016/j.surfcoat.2013.04.014

Google Scholar

[23] H. Juliano et al., "HA / ZrO _ 2 Coating on CoCr Alloy Using Flame Thermal Spray HA / ZrO 2 Coating on CoCr Alloy Using Flame Thermal Spray," Evergreen, vol. 9, no. 2, p.254–261, 2022.

DOI: 10.5109/4793632

Google Scholar

[24] F. Davoodi, F. Ashrafizadeh, M. Atapour, E. Akbari-Kharaji, and R. Mokhtari, "Anticorrosion performance of TiN coating with electroless nickel-phosphorus interlayer on Al 6061 alloy," Mater. Chem. Phys., vol. 296, no. December, p.127170, 2023.

DOI: 10.1016/j.matchemphys.2022.127170

Google Scholar

[25] H. A. Raza, M. Shafiq, M. Naeem, M. Y. Naz, J. C. Díaz-Guillén, and C. M. Lopez-Badillo, "Cathodic Cage Plasma Pre-treatment of TiN-Coated AISI-304 Stainless Steel for Enhancement of Mechanical Strength and Wear Resistance," J. Mater. Eng. Perform., vol. 28, no. 1, p.20–32, 2019.

DOI: 10.1007/s11665-018-3780-1

Google Scholar

[26] I. Aziz, E. Mulyani, and Y. Yusuf, "Morphological , mechanical and antibacterial properties of Ti – Cu – N thin films deposited by sputtering DC," Heliyon, vol. 9, no. 2, p. e17170, 2023.

DOI: 10.1016/j.heliyon.2023.e17170

Google Scholar

[27] A. Carabillò et al., "Tribological optimization of titanium-based PVD multilayer hard coatings deposited on steels used for cold rolling applications," Mater. Today Commun., vol. 34, no. November 2022, 2023.

DOI: 10.1016/j.mtcomm.2022.105043

Google Scholar

[28] R. K. Das, R. Kumar, G. Sarkar, S. Sahoo, A. Kumar Sahoo, and P. C. Mishra, "Comparative machining performance of hardened AISI 4340 Steel under dry and minimum quantity lubrication environments," Mater. Today Proc., vol. 5, no. 11, p.24898–24906, 2018.

DOI: 10.1016/j.matpr.2018.10.289

Google Scholar

[29] L. Zhu, S. S. Peng, C. L. Yin, T. C. Jen, X. Cheng, and Y. H. Yen, "Cutting temperature, tool wear, and tool life in heat-pipe-assisted end-milling operations," Int. J. Adv. Manuf. Technol., vol. 72, no. 5–8, p.995–1007, 2014.

DOI: 10.1007/s00170-014-5699-5

Google Scholar

[30] F. Zhang, M. Yan, F. Yin, Y. Wang, Y. Zhang, and J. He, "Influence of plasma nitriding temperature on microstructures and mechanical properties of Ti-N/Ti-Al multilayer coatings on the surface of 5083 Al alloys," Surf. Coatings Technol., vol. 335, no. November 2017, p.80–87, 2018.

DOI: 10.1016/j.surfcoat.2017.12.031

Google Scholar

[31] E. Bemporad, M. Sebastiani, C. Pecchio, and S. De Rossi, "High thickness Ti/TiN multilayer thin coatings for wear resistant applications," Surf. Coatings Technol., vol. 201, no. 6, p.2155–2165, 2006.

DOI: 10.1016/j.surfcoat.2006.03.042

Google Scholar

[32] N. A. Richter et al., "Significant texture and wear resistance improvement of TiN coatings using pulsed DC magnetron sputtering," Appl. Surf. Sci., vol. 635, no. June, p.157709, 2023.

DOI: 10.1016/j.apsusc.2023.157709

Google Scholar

[33] V. Malau, B. H. Priyambodo, P. T. Iswanto, and T. Sujitno, "Increased Hardness , Corrosion Resistant and Corrosion Fatigue Cracking Performance on AISI 304 by DC Sputtering," Int. Rev. Mech. Eng., vol. 12, no. 12, p.975–980, 2018.

DOI: 10.15866/ireme.v12i12.15901

Google Scholar

[34] E. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, and S. Spigarelli, "Wear resistance investigation of titanium nitride-based coatings," Ceram. Int., vol. 41, no. 9, p.10349–10379, 2015.

DOI: 10.1016/j.ceramint.2015.04.152

Google Scholar

[35] D. Kim, H. Kim, S. Im, H. Jeong, J. Noh, and S. Huh, "Effect of Ti-Based Thin Solid Films on Tribological and Mechanical Properties of AL7075-T7351," Adv. Mater. Sci. Eng., vol. 2022, 2022.

DOI: 10.1155/2022/5791263

Google Scholar

[36] N. K. Paraye, S. P. Neog, P. K. Ghosh, and S. Das, "Surface modification of AISI 8620 steel by in-situ grown TiC particle using TIG arcing," Surf. Coatings Technol., vol. 405, no. August 2020, 2021.

DOI: 10.1016/j.surfcoat.2020.126533

Google Scholar

[37] F. Zhang, M. Yan, J. He, and F. Yin, "Microstructure evolution and wear resistance of nitride/aluminide coatings on the surface of Ti-coated 2024 Al alloy during plasma nitriding," Ceram. Int., vol. 43, no. 14, p.10832–10839, 2017.

DOI: 10.1016/j.ceramint.2017.05.109

Google Scholar

[38] M. F. Zhang, F. Y. Yan, "Microstructure and mechanical properties of multiphase layer formed during depositing Ti film followed by plasma nitriding on 2024 aluminum alloy," Appl. Surf. Sci., vol. 301, no. 2, p.410–417, 2014.

DOI: 10.1016/j.apsusc.2014.02.091

Google Scholar

[39] L. Y. Mei, J. Sun, Y. Li, Y. Y. Lei, X. D. Du, and Y. C. Wu, "Fabrication of composite modified layer on aluminium alloy by surface mechanical nano-alloying combined with nitriding," Appl. Surf. Sci., vol. 499, no. August 2019, 2020.

DOI: 10.1016/j.apsusc.2019.143915

Google Scholar