[1]
T. W. B. Riyadi, T. Tjahjono, Sarjito, Margono, Suprapto, and T. Sujitno, "Wear and Corrosion Resistance of Aluminium Nitride Produced by DC Glow Discharge," Adv. Sci. Lett., vol. 53, no. 9, p.1689–1699, 2018.
DOI: 10.1166/asl.2018.12080
Google Scholar
[2]
T. Tjahjono, T. W. B. Riyadi, B. W. Febriantoko, Margono, Suprapto, and T. Sujitno, "Hardness optimization based on nitriding time and gas pressure in the plasma nitriding of aluminium alloys," Mater. Sci. Forum, vol. 961 MSF, p.112–117, 2019.
DOI: 10.4028/www.scientific.net/msf.961.112
Google Scholar
[3]
Zuliantoni, W. Suprapto, P. H. Setyarini, and F. Gapsari, "Hydroxyapatite Effect on the Corrosion Rate of AMC Al-Zn by Powder Metallurgy," Key Eng. Mater., vol. 935, no. 9, p.41–48, 2022.
DOI: 10.4028/p-613s0t
Google Scholar
[4]
V. N, H. N. Chamidy, A. Ngatin, A. Fitriani, and R. Arisya, "Effect Of Voltage On The Thickness Of Oxide Layer At Aluminum Alloys For Structural Bonding Using Phosphoric Sulfuric Acid Anodizing ( PSA ) Process," Int. J. Mech. Eng. Technol. Appl., vol. 4, no. 1, p.69–76, 2023.
DOI: 10.21776/mechta.2023.004.01.8
Google Scholar
[5]
F. Zhang, M. Yan, F. Yin, Y. Wang, Y. Zhang, and J. He, "Influence of plasma nitriding temperature on microstructures and mechanical properties of Ti-N/Ti-Al multilayer coatings on the surface of 5083 Al alloys," Surf. Coat. Technol., 2017.
DOI: 10.1016/j.surfcoat.2017.12.031
Google Scholar
[6]
D. Aruri, K. Adepu, K. Adepu, and K. Bazavada, "Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing," J. Mater. Res. Technol., vol. 2, no. 4, p.362–369, 2013.
DOI: 10.1016/j.jmrt.2013.10.004
Google Scholar
[7]
M. Karthikeyan, A. Devaraju, and R. Gopi, "Investigations on mechanical properties of aluminium alloy Al6061 hybrid metal matrix composite," Mater. Today Proc., vol. 68, p.1504–1507, 2022.
DOI: 10.1016/j.matpr.2022.07.130
Google Scholar
[8]
K. Das et al., "Effect of Pre-treatment and Duration of Pulse Plasma Nitriding on Duplex Plasma Treatment by Physical Vapor Deposition of TiN on AISI D2 Steel," J. Mater. Eng. Perform., vol. 3, no. January, p.1059–9495, 2022.
DOI: 10.1007/s11665-022-07776-3
Google Scholar
[9]
Y. Chen, L. Zhang, J. F. Zhu, Z. Q. Zhong, and J. H. Gu, "Cohesive failure and film adhesion of PVD coating: Cemented carbide substrate phase effect and its micro-mechanism," Int. J. Refract. Met. Hard Mater., vol. 111, no. August 2022, p.106066, 2023.
DOI: 10.1016/j.ijrmhm.2022.106066
Google Scholar
[10]
M. Noori et al., "Nanostructured multilayer CAE-PVD coatings based on transition metal nitrides on Ti6Al4V alloy for biomedical applications," Ceram. Int., vol. 49, no. 14, p.23367–23382, 2023.
DOI: 10.1016/j.ceramint.2023.04.169
Google Scholar
[11]
W. Andriyanti, T. Sujitno, Suprapto, and M. L. Rasyidi, "Titanium nitride (TiN) deposition on the surface of Al-5083 using DC sputtering method to improve its hardness and wear resistance," AIP Conf. Proc., vol. 2381, no. November, 2021.
DOI: 10.1063/5.0066548
Google Scholar
[12]
A. K. Bard and Q. A. Abbas, "Optik Influence of cylindrical magnetron sputtering configurations on plasma characteristics," Optik (Stuttg)., vol. 272, no. December 2022, p.170346, 2023.
DOI: 10.1016/j.ijleo.2022.170346
Google Scholar
[13]
F. Sun et al., "Duplex treatment of arc plasma nitriding and PVD TiN coating applied to dental implant screws," Surf. Coatings Technol., vol. 439, no. April, 2022.
DOI: 10.1016/j.surfcoat.2022.128449
Google Scholar
[14]
Margono, B. H. Priyambodo, K. C. Nugroho, T. Sujitno, and Suprapto, "Hardness and Wear Properties of Al-TiN Coatings Produced by DC Sputtering," Mater. Sci. Forum, vol. 1051, p.147–152, 2022.
DOI: 10.4028/www.scientific.net/msf.1051.147
Google Scholar
[15]
A. Ghailane et al., "Titanium nitride, TiXN(1−X), coatings deposited by HiPIMS for corrosion resistance and wear protection properties," Appl. Surf. Sci., vol. 574, no. October 2021, 2022.
DOI: 10.1016/j.apsusc.2021.151635
Google Scholar
[16]
F. Zhang, S. Yan, F. Yin, and J. He, "Microstructures and mechanical properties of Ti–Cr–N/Al–Ti–Cr based coatings prepared by plasma nitriding 5083 Al alloys co-deposited with Ti–Cr films," Vacuum, vol. 157, no. August, p.115–123, 2018.
DOI: 10.1016/j.vacuum.2018.08.039
Google Scholar
[17]
E. P. A. Azizpour, "Fracture and deformation mechanism of Ti(C,N)/TiAlSiN multilayer coating: FE modeling and experiments," Ceram. Int. J., vol. 43, no. October 2016, p.1–11, 2017.
DOI: 10.1016/j.ceramint.2016.10.141
Google Scholar
[18]
J. Lee and T. Tanaka, "Wear resistant super-hard multilayer transition metal-nitride coatings," Surfaces and Interfaces, vol. 2, no. 9, p.2–10, 2017.
DOI: 10.1016/j.surfin.2017.03.001
Google Scholar
[19]
T. Wang, Y. Jin, L. Bai, and G. Zhang, "Structure and properties of NbN/MoN nano-multilayer coatings deposited by magnetron sputtering," J. Alloys Compd., vol. 729, no. 9, p.942–948, 2017.
DOI: 10.1016/j.jallcom.2017.09.218
Google Scholar
[20]
X. Sui, J. Liu, S. Zhang, J. Yang, and J. Hao, "Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance," Appl. Surf. Sci., vol. 439, no. 1, p.24–32, 2018.
DOI: 10.1016/j.apsusc.2017.12.266
Google Scholar
[21]
C. Lu et al., "A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy," Appl. Surf. Sci., vol. 431, no. 9, p.32–38, 2018.
DOI: 10.1016/j.apsusc.2017.09.082
Google Scholar
[22]
M. Kumar, S. Mishra, and R. Mitra, "Effect of Ar : N2 ratio on structure and properties of Ni – TiN nanocomposite thin films processed by reactive RF/DC magnetron sputtering," Surf. Coat. Technol., vol. 228, p.100–114, 2013.
DOI: 10.1016/j.surfcoat.2013.04.014
Google Scholar
[23]
H. Juliano et al., "HA / ZrO _ 2 Coating on CoCr Alloy Using Flame Thermal Spray HA / ZrO 2 Coating on CoCr Alloy Using Flame Thermal Spray," Evergreen, vol. 9, no. 2, p.254–261, 2022.
DOI: 10.5109/4793632
Google Scholar
[24]
F. Davoodi, F. Ashrafizadeh, M. Atapour, E. Akbari-Kharaji, and R. Mokhtari, "Anticorrosion performance of TiN coating with electroless nickel-phosphorus interlayer on Al 6061 alloy," Mater. Chem. Phys., vol. 296, no. December, p.127170, 2023.
DOI: 10.1016/j.matchemphys.2022.127170
Google Scholar
[25]
H. A. Raza, M. Shafiq, M. Naeem, M. Y. Naz, J. C. Díaz-Guillén, and C. M. Lopez-Badillo, "Cathodic Cage Plasma Pre-treatment of TiN-Coated AISI-304 Stainless Steel for Enhancement of Mechanical Strength and Wear Resistance," J. Mater. Eng. Perform., vol. 28, no. 1, p.20–32, 2019.
DOI: 10.1007/s11665-018-3780-1
Google Scholar
[26]
I. Aziz, E. Mulyani, and Y. Yusuf, "Morphological , mechanical and antibacterial properties of Ti – Cu – N thin films deposited by sputtering DC," Heliyon, vol. 9, no. 2, p. e17170, 2023.
DOI: 10.1016/j.heliyon.2023.e17170
Google Scholar
[27]
A. Carabillò et al., "Tribological optimization of titanium-based PVD multilayer hard coatings deposited on steels used for cold rolling applications," Mater. Today Commun., vol. 34, no. November 2022, 2023.
DOI: 10.1016/j.mtcomm.2022.105043
Google Scholar
[28]
R. K. Das, R. Kumar, G. Sarkar, S. Sahoo, A. Kumar Sahoo, and P. C. Mishra, "Comparative machining performance of hardened AISI 4340 Steel under dry and minimum quantity lubrication environments," Mater. Today Proc., vol. 5, no. 11, p.24898–24906, 2018.
DOI: 10.1016/j.matpr.2018.10.289
Google Scholar
[29]
L. Zhu, S. S. Peng, C. L. Yin, T. C. Jen, X. Cheng, and Y. H. Yen, "Cutting temperature, tool wear, and tool life in heat-pipe-assisted end-milling operations," Int. J. Adv. Manuf. Technol., vol. 72, no. 5–8, p.995–1007, 2014.
DOI: 10.1007/s00170-014-5699-5
Google Scholar
[30]
F. Zhang, M. Yan, F. Yin, Y. Wang, Y. Zhang, and J. He, "Influence of plasma nitriding temperature on microstructures and mechanical properties of Ti-N/Ti-Al multilayer coatings on the surface of 5083 Al alloys," Surf. Coatings Technol., vol. 335, no. November 2017, p.80–87, 2018.
DOI: 10.1016/j.surfcoat.2017.12.031
Google Scholar
[31]
E. Bemporad, M. Sebastiani, C. Pecchio, and S. De Rossi, "High thickness Ti/TiN multilayer thin coatings for wear resistant applications," Surf. Coatings Technol., vol. 201, no. 6, p.2155–2165, 2006.
DOI: 10.1016/j.surfcoat.2006.03.042
Google Scholar
[32]
N. A. Richter et al., "Significant texture and wear resistance improvement of TiN coatings using pulsed DC magnetron sputtering," Appl. Surf. Sci., vol. 635, no. June, p.157709, 2023.
DOI: 10.1016/j.apsusc.2023.157709
Google Scholar
[33]
V. Malau, B. H. Priyambodo, P. T. Iswanto, and T. Sujitno, "Increased Hardness , Corrosion Resistant and Corrosion Fatigue Cracking Performance on AISI 304 by DC Sputtering," Int. Rev. Mech. Eng., vol. 12, no. 12, p.975–980, 2018.
DOI: 10.15866/ireme.v12i12.15901
Google Scholar
[34]
E. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, and S. Spigarelli, "Wear resistance investigation of titanium nitride-based coatings," Ceram. Int., vol. 41, no. 9, p.10349–10379, 2015.
DOI: 10.1016/j.ceramint.2015.04.152
Google Scholar
[35]
D. Kim, H. Kim, S. Im, H. Jeong, J. Noh, and S. Huh, "Effect of Ti-Based Thin Solid Films on Tribological and Mechanical Properties of AL7075-T7351," Adv. Mater. Sci. Eng., vol. 2022, 2022.
DOI: 10.1155/2022/5791263
Google Scholar
[36]
N. K. Paraye, S. P. Neog, P. K. Ghosh, and S. Das, "Surface modification of AISI 8620 steel by in-situ grown TiC particle using TIG arcing," Surf. Coatings Technol., vol. 405, no. August 2020, 2021.
DOI: 10.1016/j.surfcoat.2020.126533
Google Scholar
[37]
F. Zhang, M. Yan, J. He, and F. Yin, "Microstructure evolution and wear resistance of nitride/aluminide coatings on the surface of Ti-coated 2024 Al alloy during plasma nitriding," Ceram. Int., vol. 43, no. 14, p.10832–10839, 2017.
DOI: 10.1016/j.ceramint.2017.05.109
Google Scholar
[38]
M. F. Zhang, F. Y. Yan, "Microstructure and mechanical properties of multiphase layer formed during depositing Ti film followed by plasma nitriding on 2024 aluminum alloy," Appl. Surf. Sci., vol. 301, no. 2, p.410–417, 2014.
DOI: 10.1016/j.apsusc.2014.02.091
Google Scholar
[39]
L. Y. Mei, J. Sun, Y. Li, Y. Y. Lei, X. D. Du, and Y. C. Wu, "Fabrication of composite modified layer on aluminium alloy by surface mechanical nano-alloying combined with nitriding," Appl. Surf. Sci., vol. 499, no. August 2019, 2020.
DOI: 10.1016/j.apsusc.2019.143915
Google Scholar