Microcrystalline Cellulose as Composite Reinforcement: Assessment and Future Prospects

Article Preview

Abstract:

In order to enhance diverse composites and foster sustainable development, it is essential to use strategic measures. Microcrystalline cellulose (MCC) has the desirable characteristics of being both renewable and biodegradable. The characteristics above provide MCC with a favorable option for enhancing the structural integrity of composite materials. This study examines the literature on using MCC as a composite reinforcement to identify its primary characteristics. This evaluation explores the properties and potential future advancements of the naturally derived materials under investigation. This work comprehensively reviews scientific publications to guide future research efforts. Based on empirical investigations, using MCC as a composite reinforcement has enhanced various mechanical and tribological characteristics. This study provides a comprehensive reference for implementing sustainable MCC as a composite reinforcement.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1122)

Pages:

65-80

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. C. Ramires, J. D. Megiatto, A. Dufresne, and E. Frollini, "Cellulose Nanocrystals versus Microcrystalline Cellulose as Reinforcement of Lignopolyurethane Matrix," Fibers, vol. 8, no. 4, p.21, Mar. 2020.

DOI: 10.3390/fib8040021

Google Scholar

[2] W. W. Raharjo, R. Salam, and D. Ariawan, "The Effect of Microcrystalline Cellulose on the Physical, Thermal, and Mechanical Properties of Composites Based on Cantala Fiber and Recycled High-Density Polyethylene," J. Nat. Fibers, vol. 20, no. 2, p.2204454, Aug. 2023.

DOI: 10.1080/15440478.2023.2204454

Google Scholar

[3] F. A. M. M. Gonçalves, M. Santos, T. Cernadas, P. Alves, and P. Ferreira, "Influence of fillers on epoxy resins properties: a review," J. Mater. Sci., vol. 57, no. 32, p.15183–15212, Aug. 2022.

DOI: 10.1007/s10853-022-07573-2

Google Scholar

[4] B. Gugulothu, N. Nagabhooshanam, M. Arun, N. Vinayaka, P. P. Patil, and K. V. S. R. Murthy, "Manihot esculenta tuber microcrystalline cellulose and woven bamboo fiber-reinforced unsaturated polyester composites: mechanical, hydrophobic and wear behavior," Mater. Res. Express, vol. 10, no. 3, p.035302, Mar. 2023.

DOI: 10.1088/2053-1591/acabb1

Google Scholar

[5] M. Bhong et al., "Review of composite materials and applications," Mater. Today Proc., Oct. 2023.

DOI: 10.1016/j.matpr.2023.10.026

Google Scholar

[6] K. Balasubramanian, N. Rajeswari, and K. Vaidheeswaran, "Analysis of mechanical properties of natural fibre composites by experimental with FEA," Mater. Today Proc., vol. 28, p.1149–1153, 2020.

DOI: 10.1016/j.matpr.2020.01.098

Google Scholar

[7] F. Zhong and J. Nsor-Atindana, "Microcrystalline cellulose and nanocrystalline cellulose," in Handbook of Hydrocolloids, Elsevier, 2021, p.509–536.

DOI: 10.1016/B978-0-12-820104-6.00021-8

Google Scholar

[8] M. González Martínez et al., "Impact of cellulose properties on its behavior in torrefaction: commercial microcrystalline cellulose versus cotton linters and celluloses extracted from woody and agricultural biomass," Cellulose, vol. 28, no. 8, p.4761–4779, May 2021.

DOI: 10.1007/s10570-021-03812-y

Google Scholar

[9] K. Leppänen, S. Andersson, M. Torkkeli, M. Knaapila, N. Kotelnikova, and R. Serimaa, "Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering," Cellulose, vol. 16, no. 6, p.999–1015, Dec. 2009.

DOI: 10.1007/s10570-009-9298-9

Google Scholar

[10] J. Nsor-Atindana, M. Chen, H. D. Goff, F. Zhong, H. R. Sharif, and Y. Li, "Functionality and nutritional aspects of microcrystalline cellulose in food," Carbohydr. Polym., vol. 172, p.159–174, Sep. 2017.

DOI: 10.1016/j.carbpol.2017.04.021

Google Scholar

[11] M. Rasheed, M. Jawaid, B. Parveez, A. Hussain Bhat, and S. Alamery, "Morphology, Structural, Thermal, and Tensile Properties of Bamboo Microcrystalline Cellulose/Poly(Lactic Acid)/Poly(Butylene Succinate) Composites," Polymers (Basel)., vol. 13, no. 3, p.465, Feb. 2021.

DOI: 10.3390/polym13030465

Google Scholar

[12] S. B. Abd Hamid, Z. Z. Chowdhury, and M. Z. Karim, "Catalytic Extraction of Microcrystalline Cellulose (MCC) from Elaeis guineensis using Central Composite Design (CCD)," BioResources, vol. 9, no. 4, p.7403–7426, Oct. 2014.

DOI: 10.15376/biores.9.4.7403-7426

Google Scholar

[13] A. S. Filho, S. Parveen, S. Rana, R. Vanderlei, and R. Fangueiro, "Micro-structure and mechanical properties of microcrystalline cellulose-sisal fiber reinforced cementitious composites developed using cetyltrimethylammonium bromide as the dispersing agent," Cellulose, vol. 28, no. 3, p.1663–1686, Feb. 2021.

DOI: 10.1007/s10570-020-03641-5

Google Scholar

[14] B. Debnath, P. Duarah, D. Haldar, and M. K. Purkait, "Improving the Properties of Corn Starch Films for Application as Packaging Material Via Reinforcement with Microcrystalline Cellulose Synthesized from Elephant Grass," SSRN Electron. J., 2022.

DOI: 10.2139/ssrn.4093729

Google Scholar

[15] A. Cataldi, A. Dorigato, F. Deflorian, and A. Pegoretti, "Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration," J. Mater. Sci., vol. 49, no. 5, p.2035–2044, Mar. 2014.

DOI: 10.1007/s10853-013-7892-6

Google Scholar

[16] J. Wang et al., "Green preparation of porous corncob microcrystalline cellulose, and its properties and applications," Cellulose, vol. 29, no. 13, p.7125–7138, Sep. 2022.

DOI: 10.1007/s10570-022-04724-1

Google Scholar

[17] N. Gürler and G. Torğut, "Physicomechanical, thermal and dielectric properties of eco‐friendly starch‐microcrystalline cellulose‐clay nanocomposite films for food packaging and electrical applications," Packag. Technol. Sci., vol. 35, no. 6, p.473–483, Jun. 2022.

DOI: 10.1002/pts.2643

Google Scholar

[18] M. Diarsa and A. Gupte, "Preparation, characterization and its potential applications in Isoniazid drug delivery of porous microcrystalline cellulose from banana pseudostem fibers," 3 Biotech, vol. 11, no. 7, p.334, Jul. 2021.

DOI: 10.1007/s13205-021-02838-0

Google Scholar

[19] S. Gaidukovs et al., "Understanding the Impact of Microcrystalline Cellulose Modification on Durability and Biodegradation of Highly Loaded Biocomposites for Woody Like Materials Applications," J. Polym. Environ., vol. 30, no. 4, p.1435–1450, Apr. 2022.

DOI: 10.1007/s10924-021-02291-3

Google Scholar

[20] A. Boonsiriwit, M. Lee, M. Kim, P. Inthamat, U. Siripatrawan, and Y. S. Lee, "Hydroxypropyl methylcellulose/microcrystalline cellulose biocomposite film incorporated with butterfly pea anthocyanin as a sustainable pH-responsive indicator for intelligent food-packaging applications," Food Biosci., vol. 44, p.101392, Dec. 2021.

DOI: 10.1016/j.fbio.2021.101392

Google Scholar

[21] M.Alavi, "Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications," e-Polymers, vol. 19, no. 1, pp.103-119, May 2019.

DOI: 10.1515/epoly-2019-0013

Google Scholar

[22] H. Nasution, P. Suherman, Kelvin, and Winny, "Mechanical Properties of Microcrystalline Cellulose from Coconut Fiber Reinforced Waste Styrofoam Composite : The Effect of Compression Molding Temperature," IOP Conf. Ser. Mater. Sci. Eng., vol. 1003, no. 1, p.012125, Dec. 2020.

DOI: 10.1088/1757-899X/1003/1/012125

Google Scholar

[23] Jamasri and F. Yudhanto, "Effect of Addition Microcrystalline Cellulose on Mechanical Properties of Jute/Glass Fibers Hybrid Laminated Composite," Int. J. Automot. Eng., vol. 12, no. 1, p.20214159, 2021.

DOI: 10.20485/jsaeijae.12.1_1

Google Scholar

[24] J. Jirum and Y. Baimark, "Thermal and Mechanical Properties of Flexible Poly(L-lactide)-b-polyethylene Glycol-b-poly(L-lactide)/Microcrystalline Cellulose Biocomposites," Asian J. Chem., vol. 33, no. 9, p.2135–2142, Aug. 2021.

DOI: 10.14233/ajchem.2021.23299

Google Scholar

[25] C. Chindawong, N. Setthaya, P. Mekrattanachai, N. Damrongwiriyanupap, K. Pimraksa, and D. Johannsmann, "Effect of adding carboxymethyl cellulose, zeolite and microcrystalline cellulose on the optical and mechanical properties of latex composite films," J. Phys. Conf. Ser., vol. 2175, no. 1, p.012011, Jan. 2022.

DOI: 10.1088/1742-6596/2175/1/012011

Google Scholar

[26] N. Suklaw and U. Ratanakamnuan, "Mechanical Properties and Biodegradability of Starch-based Biocomposite Films Reinforced with Microcrystalline Cellulose from Rice Embryo," J. Phys. Conf. Ser., vol. 2175, no. 1, p.012034, Jan. 2022.

DOI: 10.1088/1742-6596/2175/1/012034

Google Scholar

[27] V. R. Arun Prakash and R. Viswanathan, "Fabrication and characterization of silanized echinoidea fillers and kenaf fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid biocomposite," Int. J. Plast. Technol., vol. 23, no. 2, p.207–217, Dec. 2019.

DOI: 10.1007/s12588-019-09251-6

Google Scholar

[28] L. V. Dien, T. T. Dat, T. T. Khanh, and H. V. Trinh, "Synthesis of microcrystalline cellulose from sugarcane bagasse and its incorporation into Polyvinyl Alcohol (PVA) matrix to test the composites mechanical properties," Mater. Res. Express, vol. 10, no. 3, p.035101, Mar. 2023.

DOI: 10.1088/2053-1591/acbd18

Google Scholar

[29] W. P. Raharjo, D. Ariawan, K. Diharjo, W. W. Raharjo, and B. Kusharjanta, "Effect of alkaline treatment time of fibers and microcrystalline cellulose addition on mechanical properties of unsaturated polyester composites reinforced by cantala fibers," Rev. Adv. Mater. Sci., vol. 62, no. 1, Aug. 2023.

DOI: 10.1515/rams-2023-0103

Google Scholar

[30] M. M. Rehman, M. Zeeshan, K. Shaker, and Y. Nawab, "Effect of micro-crystalline cellulose particles on mechanical properties of alkaline treated jute fabric reinforced green epoxy composite," Cellulose, vol. 26, no. 17, p.9057–9069, Nov. 2019.

DOI: 10.1007/s10570-019-02679-4

Google Scholar

[31] C. Hadi Wibowo, S. Sunardi, and R. Lusiani, "Karakteristik Papan Komposit dengan Menggunakan Kulit Salak Sebagai Filler Komposit," J. METTEK, vol. 7, no. 2, p.109, Nov. 2021.

DOI: 10.24843/mettek.2021.v07.i02.p07

Google Scholar

[32] R. Bintarto, T. D. Widodo, R. Raharjo, E. Sulistyo, and B. Tamtomo, "The Effect of Boiling Time of Wulung Bamboo Fiber (Gigantochloa Atroviolacea) in NaOH Solution on Tensile Strength of Epoxy Matriced Composites," Int. J. Mech. Eng. Technol. Appl., vol. 3, no. 1, p.15, Jan. 2022.

DOI: 10.21776/MECHTA.2022.003.01.3

Google Scholar

[33] M. A. Hamdan, N. A. Ramli, N. A. Othman, K. N. Mohd Amin, and F. Adam, "Characterization and property investigation of microcrystalline cellulose (MCC) and carboxymethyl cellulose (CMC) filler on the carrageenan-based biocomposite film," Mater. Today Proc., vol. 42, p.56–62, 2021.

DOI: 10.1016/j.matpr.2020.09.304

Google Scholar

[34] M. K. M. Haafiz, A. Hassan, Z. Zakaria, I. M. Inuwa, M. S. Islam, and M. Jawaid, "Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose," Carbohydr. Polym., vol. 98, no. 1, p.139–145, Oct. 2013.

DOI: 10.1016/j.carbpol.2013.05.069

Google Scholar

[35] L. Prasad, V. Singh, R. V. Patel, A. Yadav, V. Kumar, and J. Winczek, "Physical and Mechanical Properties of Rambans (Agave) Fiber Reinforced with Polyester Composite Materials," J. Nat. Fibers, vol. 19, no. 13, p.6104–6118, Dec. 2022.

DOI: 10.1080/15440478.2021.1904481

Google Scholar

[36] M. H. Palmiyanto, E. Surojo, D. Ariawan, and F. Imaduddin, "E-glass/kenaf fibre reinforced thermoset composites fiiled with MCC and immersion in a different fluid," Sci. Rep., vol. 12, no. 1, p.20332, Nov. 2022.

DOI: 10.1038/s41598-022-24506-w

Google Scholar

[37] A. Jabbar, J. Militký, J. Wiener, B. M. Kale, U. Ali, and S. Rwawiire, "Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior," Compos. Struct., vol. 161, p.340–349, Feb. 2017.

DOI: 10.1016/j.compstruct.2016.11.062

Google Scholar

[38] F. Ferreira, I. Pinheiro, S. de Souza, L. Mei, and L. Lona, "Polymer Composites Reinforced with Natural Fibers and Nanocellulose in the Automotive Industry: A Short Review," J. Compos. Sci., vol. 3, no. 2, p.51, May 2019.

DOI: 10.3390/jcs3020051

Google Scholar