Impact of WO3-Nanoparticles on the Setting Time and Early Strength for Different Cementitious Materials

Article Preview

Abstract:

Generally, the setting time and early strength of the cementitious materials are good indications to identify their suitability to be employed as binding materials. Due to the high surface area of nanomaterials, it is considered one of the optimal solutions to modify these properties. Accordingly, this work is focused on comparing the impact of laboratory-prepared tungsten oxide nanoparticles (WO3-NP) on two cementitious materials: OPC and alkali-activated slag (AAS). The initial/final-setting time and early compressive strength up to 28-days of the OPC and AAS specimens, modified with 1, 2 wt.% WO3-NP, were investigated. The results displayed that WO3-NP has a significant impact on the acceleration of the initial/final-setting time of both binding materials. Moreover, the optimal dosage from WO3-NP (1 wt.%) upgraded the compressive strength by 19.5 and 15.1% for OPC and AAS, respectively after 7 days. The nucleation-seeds and nano-filler effect of WO3-NPs are the focal explanations behind improving these properties via the formation of strength-giving phases and then obtaining a compact microstructure as proved by XRD and SEM.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1123)

Pages:

125-133

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.M. Abdeldayem, M.A. Sayed, Synthesis and characterization of Ag/Ce1-XBiXZnO composites hosted α-β/Bi2O3 as highly efficient catalysts for degradation of cationic and anionic dyes, Journal of Photochemistry and Photobiology A: Chemistry, 427 (2022) 113773.

DOI: 10.1016/j.jphotochem.2022.113773

Google Scholar

[2] M.A. Sayed, W. Abdelmaksoud, S.M. Teleb, A.M. El-Din, M.M. Abo-Aly, Low-cost fabrication and physicochemical characterization of ZnFe2O4 nanoparticles as an efficient multifunctional inorganic pigment, Journal of Coatings Technology and Research, 20 (2023) 1997-2006.

DOI: 10.1007/s11998-023-00793-4

Google Scholar

[3] H. Yang, H. Cui, W. Tang, Z. Li, N. Han, F. Xing, A critical review on research progress of graphene/cement based composites, Composites Part A: Applied Science and Manufacturing, 102 (2017) 273-296.

DOI: 10.1016/j.compositesa.2017.07.019

Google Scholar

[4] M.S. El-Feky, A. Mohsen, A. Maher El-Tair, M. Kohail, Microstructural investigation for micro - nano-silica engineered magnesium oxychloride cement, Construction and Building Materials, 342 (2022) 127976.

DOI: 10.1016/j.conbuildmat.2022.127976

Google Scholar

[5] M.M. Wetwet, S.M.A. El-Gamal, M. Ramadan, M.M. Hazem, Multifunctional cementitious blends containing zirconia nanoparticles: Mechanical characteristics, gamma attenuation behavior, and self-cleaning performance, Journal of Building Engineering, 65 (2023) 105736.

DOI: 10.1016/j.jobe.2022.105736

Google Scholar

[6] M. Ramadan, M. Kohail, Y.R. Alharbi, A.A. Abadel, A.S. Binyahya, A. Mohsen, Investigation of autoclave curing impact on the mechanical properties, heavy metal stabilization and anti-microbial activity of the green geopolymeric composite based on received/thermally-treated glass polishing sludge, Journal of Materials Research and Technology, 23 (2023) 2672-2689.

DOI: 10.1016/j.jmrt.2023.01.158

Google Scholar

[7] S.M.A. El-Gamal, S.A. Abo-El-Enein, F.I. El-Hosiny, M.S. Amin, M. Ramadan, Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles, Journal of Thermal Analysis and Calorimetry, 131 (2018) 949-968.

DOI: 10.1007/s10973-017-6629-1

Google Scholar

[8] S.A. Abo-El-Enein, F.I. El-Hosiny, S.M.A. El-Gamal, M.S. Amin, M. Ramadan, Gamma radiation shielding, fire resistance and physicochemical characteristics of Portland cement pastes modified with synthesized Fe2O3 and ZnO nanoparticles, Construction and Building Materials, 173 (2018) 687-706.

DOI: 10.1016/j.conbuildmat.2018.04.071

Google Scholar

[9] A. Mohsen, H.A. Abdel-Gawwad, M. Ramadan, Performance, radiation shielding, and anti-fungal activity of alkali-activated slag individually modified with zinc oxide and zinc ferrite nano-particles, Construction and Building Materials, 257 (2020) 119584.

DOI: 10.1016/j.conbuildmat.2020.119584

Google Scholar

[10] M. Heikal, N.S. Ibrahim, Hydration, microstructure and phase composition of composite cements containing nano-clay, Construction and Building Materials, 112 (2016) 19-27.

DOI: 10.1016/j.conbuildmat.2016.02.177

Google Scholar

[11] K. Rathinam, S.S, V. S.P, V.M, N.K. U, Properties of nano silica modified cement less geopolymer composite mortar using fly ash and GGBS, Materials Today: Proceedings, 62 (2022) 535-542.

DOI: 10.1016/j.matpr.2022.03.589

Google Scholar

[12] A. Mohsen, M. Kohail, Y.R. Alharbi, A.A. Abadel, A.M. Soliman, M. Ramadan, Bio-mechanical efficacy for slag/fly ash-based geopolymer mingled with mesoporous NiO, Case Studies in Construction Materials, 19 (2023) e02283.

DOI: 10.1016/j.cscm.2023.e02283

Google Scholar

[13] L. Ghasemi, H. Jafari, Morphological Characterization of Tungsten Trioxide Nanopowders Synthesized by Sol-Gel Modified Pechini's Method, Materials Research, 20 (2017).

DOI: 10.1590/1980-5373-mr-2017-0467

Google Scholar

[14] L. Zhang, H. Wang, J. Liu, Q. Zhang, H. Yan, Nonstoichiometric tungsten oxide: structure, synthesis, and applications, Journal of Materials Science: Materials in Electronics, 31 (2020).

DOI: 10.1007/s10854-019-02596-z

Google Scholar

[15] M.A. Sayed, S.M.A. El-Gamal, A. Mohsen, M. Ramadan, M.M. Wetwet, N.M. Deghiedy, A.E. Swilem, M.M. Hazem, Towards a green climate: Production of slag–red brick waste-based geopolymer mingled with WO3 nanoparticles with bio-mechanical achievements, Construction and Building Materials, 413 (2024) 134909.

DOI: 10.1016/j.conbuildmat.2024.134909

Google Scholar

[16] V. Dutta, S. Sharma, P. Raizada, V.K. Thakur, A.A.P. Khan, V. Saini, A.M. Asiri, P. Singh, An overview on WO3 based photocatalyst for environmental remediation, Journal of Environmental Chemical Engineering, 9 (2021) 105018.

DOI: 10.1016/j.jece.2020.105018

Google Scholar

[17] L. Santos, C.M. Silveira, E. Elangovan, J.P. Neto, D. Nunes, L. Pereira, R. Martins, J. Viegas, J.J. Moura, S. Todorovic, Synthesis of WO3 nanoparticles for biosensing applications, Sensors and Actuators B: Chemical, 223 (2016) 186-194.

DOI: 10.1016/j.snb.2015.09.046

Google Scholar

[18] J. Bentley, S. Desai, B.P. Bastakoti, Porous Tungsten oxide: recent advances in design, synthesis, and applications, Chemistry–A European Journal, 27 (2021) 9241-9252.

DOI: 10.1002/chem.202100649

Google Scholar

[19] M.B. Tahir, G. Nabi, M. Rafique, N. Khalid, Nanostructured-based WO 3 photocatalysts: recent development, activity enhancement, perspectives and applications for wastewater treatment, International Journal of Environmental Science and Technology, 14 (2017) 2519-2542.

DOI: 10.1007/s13762-017-1394-z

Google Scholar

[20] ASTMC109M-20b, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens., Annual Book of ASTM Standards, (2020).

DOI: 10.1520/c0109_c0109m-11b

Google Scholar

[21] I.M. Szilágyi, B. Fórizs, O. Rosseler, Á. Szegedi, P. Németh, P. Király, G. Tárkányi, B. Vajna, K. Varga-Josepovits, K. László, WO3 photocatalysts: Influence of structure and composition, Journal of catalysis, 294 (2012) 119-127.

DOI: 10.1016/j.jcat.2012.07.013

Google Scholar

[22] Y. Lu, J. Zhang, F. Wang, X. Chen, Z. Feng, C. Li, K2SO4-assisted hexagonal/monoclinic WO3 phase junction for efficient photocatalytic degradation of RhB, ACS Applied Energy Materials, 1 (2018) 2067-2077.

DOI: 10.1021/acsaem.8b00168

Google Scholar

[23] P. Shandilya, S. Sambyal, R. Sharma, P. Mandyal, B. Fang, Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts, Journal of Hazardous Materials, 428 (2022) 128218.

DOI: 10.1016/j.jhazmat.2022.128218

Google Scholar

[24] M. Patel, S. Manna, A. Vo, X. Xu, D. Conti, S. Choi, D. Kozak, J. Zheng, Scanning Electron Microscope (SEM) Coupled with Energy Dispersive X-ray Spectroscopy (EDS)-A Potential Analytical Tool for Physico-chemical Characterization of API in Complex Drug Formulations, Microscopy and Microanalysis, 26 (2020) 2254-2255.

DOI: 10.1017/s1431927620020978

Google Scholar

[25] S. Rades, V.-D. Hodoroaba, T. Salge, T. Wirth, M.P. Lobera, R.H. Labrador, K. Natte, T. Behnke, T. Gross, W.E.S. Unger, High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles, RSC advances, 4 (2014) 49577-49587.

DOI: 10.1039/c4ra05092d

Google Scholar

[26] H.A. Mashout, T.A. Razek, M.S. Amin, F.S. Hashem, F.A. Selim, Performance of nano titania-reinforced slag/basalt geopolymer composites, Journal of Engineering and Applied Science, 70 (2023) 106.

DOI: 10.1186/s44147-023-00278-6

Google Scholar

[27] H.A. Abdel-Gawwad, E.E. Hekal, H. El-Didamony, F.S. Hashem, A.H. Mohammed, A new method to create one-part non-Portland cement powder, Journal of Thermal Analysis and Calorimetry, 134 (2018) 1447-1456.

DOI: 10.1007/s10973-018-7255-2

Google Scholar

[28] M. Refaie, A. Mohsen, A.R. Nasr El-Sayed, M. Kohail, The Effect of Structural Stability of Chemical Admixtures on the NaOH Alkali-Activated Slag Properties, Journal of Materials in Civil Engineering, 35 (2023) 04022367.

DOI: 10.1061/(asce)mt.1943-5533.0004523

Google Scholar