Assessment of the Activity of Galvanic Couples Involving Amalgam Filling Materials

Article Preview

Abstract:

Comparative studies of the corrosion and electrochemical properties of amalgam filling materials based on copper, silver and non-gamma-2 "Oralloy" amalgam (Switzerland) were carried out in aqueous solutions of sodium chloride, sodium bicarbonate and citric acid at room temperatures and under conditions of mechanical depassivation of the surface. Although copper amalgam is corrosion-resistant in control environments due to the formation of protective passivating layers on the surface, the test results show that the advantage of silver amalgam in all tested solutions is obvious. It has been confirmed that the “Oralloy” filling material has advantages over copper and silver amalgams in the corrosion-electrochemical aspect. It is corrosion resistant in physiological neutral and slightly alkaline solutions, like silver amalgam, but surpasses it in electrochemical inertness. It has been shown that when predicting the intensity of galvanic processes that occur in the presence of two or more dissimilar metallic inclusions in the oral cavity, the potential difference between them is a necessary but insufficient criterion. When deciding the compatibility of new filling materials and previously used ones, it is necessary to take into account the pH of the environment, the potential difference between them, their nature and surface condition, as well as their position on the surface of the teeth. If there is a possibility of abrasion of the amalgam surface by antagonist teeth, then the likelihood of galvanosis increases significantly.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1126)

Pages:

151-158

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.C. Bayne, Perspectives. Our future in restorative dental materialis. J. Esthet. Dent, (2000) 175–183.

Google Scholar

[2] T. Berry, J. Nicholson, K. Troendle, Almost two centuries with amalgam: where are we today? J. Am. Dent. Assoc. 125(4) (1994) 392–329.

DOI: 10.14219/jada.archive.1994.0053

Google Scholar

[3] M. Toledano, E. Osorio, F. S. Aguilera, M. Toledano-Osorio, M. T. López-López, R. Osorio, Stored potential energy increases and elastic properties alterations are produced after restoring dentin with Zn-containing amalgams. Journal of the Mechanical Behavior of Biomedical Materials. 91 (2019) 109–121.

DOI: 10.1016/j.jmbbm.2018.12.002

Google Scholar

[4] G. Vanherle, Dental care using silver amalgam. Verh. K. Acad. Geneeskd. Belg. 58(5) (1996) 587–634.

Google Scholar

[5] W.W. Goon, A.A. Lugassy, Periapical electrolytic corrosion in the failure of silver point endodontic restorations: report of two cases. Quintessence. Int. 26(9) (1995) 629–633.

Google Scholar

[6] J.D. Scholtanus, M. Özcan, Clinical longevity of extensive direct composite restorations in amalgam replacement: up to 3.5 years follow-up. J. Dent. 42 (2014) 1404–1410.

DOI: 10.1016/j.jdent.2014.06.008

Google Scholar

[7] J. W. Hofsteenge, J. D. Scholtanus, M. Özcan, I. M. Nolte, M. S. Cune, M. M.M. Gresnigt, Clinical longevity of extensive direct resin composite restorations after amalgam replacement with a mean follow-up of 15 years. Journal of Dentistry. 130 (2023) 104409.

DOI: 10.1016/j.jdent.2023.104409

Google Scholar

[8] M. Toledano, F. S. Aguilera, E. Osorio, I. Cabello, M. Toledano-Osorio, R. Osorio. Mechanical and chemical characterisation of demineralised human dentine after amalgam restorations. Journal of the Mechanical Behavior of Biomedical Materials. 47 (2015) 65–76.

DOI: 10.1016/j.jmbbm.2015.03.012

Google Scholar

[9] P. Herrstrym, B. Hygstedt, Clinical study of oral galvanism: no evidence of toxic mercury exposure but anxiety disorder an important background factor. Scand. J. Dent. Res. 101(4) (1993) 232–237.

DOI: 10.1111/j.1600-0722.1993.tb01111.x

Google Scholar

[10] A.J. Certosimo, R.P. O'Connor, Oral electricity. Gen. Dent. 44 (1996) 4 324–326.

Google Scholar

[11] T.P. Skrypnikova, V.YA. Melʹnyk, Diya riznoridnykh metaliv na slyzovu obolonku porozhnyny rota. Osnovni stomatolohichni zakhvoryuvannya, yikh profilaktyka ta likuvannya. – Poltava, 1996. p.151–152 [in Ukrainian].

Google Scholar

[12] R.H. Kuijs, W.M.M. Fennis, C.M. Kreulen, F.J.M. Roeters, N. Verdonschot, N.H.J. Creugers, A comparison of fatigue resistance of three materials for cusp-replacing adhesive restorations. J. Dent. 34 (2006) 19–25.

DOI: 10.1016/j.jdent.2005.02.010

Google Scholar

[13] V.F. Makyeyev, A.YU. Kordiyak, L.H. Horokh, S.M. Chayka, Halʹvanichni protsesy v porozhnyni rota ta yikh vplyv na orhanizm lyudyny. Chastyna 1. Aktyvnistʹ poverkhni metalevykh zubnykh proteziv ta elektrokhimichni reaktsiyi pry vzayemodiyi metal-rotova ridyna. Novyny stomatolohiyi. 4 (21) (1999) 74–78 [in Ukrainian].

Google Scholar

[14] V.F. Kutsevlyak, Ye.K. Sevidova, M.G. Shchegoleva, A.V. Vasilchenko, Elektrokhimicheskiye i korrozionnyye issledovaniya plombirovochnykh amal'gamnykh materialov. Vísnyk stomatologíí̈. 4 (1999) 7–9.

Google Scholar

[15] Mariy Shyogoleva, Olena Sevidova, Alexey Vasilchenko, Irуna Stepanova, Assessment of Electrochemical Compatibility of Structural Materials of Some Dental Products. Materials Science Forumю 1006 (2020) 253–258.

DOI: 10.4028/www.scientific.net/msf.1006.253

Google Scholar

[16] A.V. Vasilchenko, Ye.K. Sevidova, O vliyanii depassivatsii na toki gal'vanopar pri korrozionnykh protsessakh v mekhanicheskikh ustroystvakh. Problemy pozharnoy bezopasnosti. 12 (2002) 56–60.

Google Scholar

[17] V.F. Kutsevlyak, O.K. Sevidova, M.G. Schogoleva, O.V. Vasilchenko, Declaratory patent for an invention UA No. 55906 A, 2002076060 (2003). Sposib diagnostiki galvanoziv.

Google Scholar

[18] M.D. Sakhnenko, M.V. Vedʹ, T.P. Yaroshok. Osnovy teoriyi koroziyi ta zakhystu metaliv. NTU "KHPI", Kharkiv, 2005.

Google Scholar