Characteristics of Crosslinked Gelatin Film with Dialdehyde Cellulose Influenced by Plasticizer Type

Article Preview

Abstract:

The mechanical strength and structural stability of gelatin film were enhanced by crosslinking with dialdehyde cellulose (DC), having an aldehyde content of 65%. However, the elasticity of the film was improved by plasticizers. The recent work aims to examine the effect of plasticizer type on the characteristics of the gelatin film crosslinked with DC (GDC). The results demonstrated that the weight loss of the films increased after 24 hours of immersion in distilled water, resulting in diminished structural stability compared to the GDC film without adding a plasticizer. Insignificant differences in mechanical properties were observed among the GDC-plasticizer films. The GDC film with glycerol had the most vivid yellow hue, followed by the ones with PEG and sorbitol, respectively. Following a better appearance, the GDC film supplemented with sorbitol could be a potential candidate for packaging application.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1126)

Pages:

23-29

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.I. Ahmad, Y. Li, J. Pan, F. Liu, H. Dai, Y. Fu, T. Huang, S. Farooq and H. Zhang, Collagen and gelatin: Structure, properties, and applications in food industry, Int. J. Biol. Macromol. 254 (2024), 128037.

DOI: 10.1016/j.ijbiomac.2023.128037

Google Scholar

[2] W. Zhang, M. Azizi-Lalabadi, S. Jafarzadeh and S.M. Jafari, Starch-gelatin blend films: A promising approach for high-performance degradable food packaging, Carbohyd. Polym. 320 (2023), 121266.

DOI: 10.1016/j.carbpol.2023.121266

Google Scholar

[3] S. Mohanto, S. Narayana, K.P. Merai, J.A. Kumar, A. Bhunia, U. Hani, A.A. Fatease, B.H.J. Gowda, S. Nag, M.G. Ahmed, K. Paul and L.K. Vora, Advancements in gelatin-based hydrogel systems for biomedical applications: a state-of-the-art review, Int. J. Biol. Macromol. 253 (2023), 127143.

DOI: 10.1016/j.ijbiomac.2023.127143

Google Scholar

[4] C. Morrish, S. Teimouri and S. Kasapis, tructural manipulation of the gelatin/genipin network to inform the molecular transport of caffeine, Food Hydrocolloid. 140 (2023), 108616.

DOI: 10.1016/j.foodhyd.2023.108616

Google Scholar

[5] S. Yang, Y. Zhang, T. Wang, W. Sun and Z. Tong, Ultrafast and programmable shape memory hydrogel of gelatin soaked in tannic acid solution, ACS Appl. Mater. Inter. 12 (2020), 46701-46709.

DOI: 10.1021/acsami.0c13531

Google Scholar

[6] L. Pan, J. Du, Q. Yin, Y. Tao and P. Li, Tannic acid adsorption properties of cellulose nanocrystalline/fish swim bladder gelatin composite sponge, Int. J. Biol. Macromol. 257 (2024), 128552.

DOI: 10.1016/j.ijbiomac.2023.128552

Google Scholar

[7] S. Taokaew, S. Seetabhawang, P. Siripong and M. Phisalaphong, Biosynthesis and Characterization of Nanocellulose-Gelatin Films, Materials. 6 (2013), 782.

DOI: 10.3390/ma6030782

Google Scholar

[8] N. Thongsrikhem, S. Taokaew, M. Sriariyanun and S. Kirdponpattara, Antibacterial activity in gelatin-bacterial cellulose composite film by thermally crosslinking with cinnamaldehyde towards food packaging application, Food Packag. Shelf Life. 31 (2022), 100766.

DOI: 10.1016/j.fpsl.2021.100766

Google Scholar

[9] Z.N. Hanani, J.A. O'Mahony, Y.H. Oliveira and J.P. Kerry, Extrusion of gelatin-based composite films: Effects of processing temperature and pH of film forming solution on mechanical and barrier properties of manufactured films, Food Packag Shelf Life. 2 (2014), 91.

DOI: 10.1016/j.fpsl.2014.09.001

Google Scholar

[10] Ratna, C. Ulfariati, Yusmanizar, S. Aprilia, Rahmiati and A.A. Munawar, Development of biocomposite edible film food packaging based on gelatin from chicken claw waste, Case Stud. Chem. Environ. Eng. 8 (2023), 100371.

DOI: 10.1016/j.cscee.2023.100371

Google Scholar

[11] A.A. Al-Hassan and M.H. Norziah, Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers, Food Hydrocolloid. 26 (2012), 108.

DOI: 10.1016/j.foodhyd.2011.04.015

Google Scholar

[12] M. Easdani, S. Ahammed, M.N. Saqib, F. Liu and F. Zhong, Engineering biodegradable controlled gelatin-zein bilayer film with improved mechanical strength and flexibility, Food Hydrocolloid. 148 (2024), 109430.

DOI: 10.1016/j.foodhyd.2023.109430

Google Scholar

[13] A. Phumkacha, T. Leejarkpai and S. Kirdponpattara, Effects of Plasticizers on Physical and Mechanical Properties of Tamarind Kernel Powder Film, Mater. Sci. Forum. 1098 (2023), 65.

DOI: 10.4028/p-nbii0n

Google Scholar

[14] N. Cao, X. Yang and Y. Fu, Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films, Food Hydrocolloid. 23 (2009), 729-735.

DOI: 10.1016/j.foodhyd.2008.07.017

Google Scholar

[15] J.W. Park, W.S. Whiteside and S.Y. Cho, Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin film, LWT-Food Sci. Technol. 41 (2008), 692-700.

DOI: 10.1016/j.lwt.2007.04.015

Google Scholar

[16] P.J.A. Sobral, F.C. Menegalli, M.D. Hubinger and M.A. Roques, Mechanical, water vapor barrier and thermal properties of gelatin based edible films, Food Hydrocolloid. 15 (2001), 423-432.

DOI: 10.1016/s0268-005x(01)00061-3

Google Scholar

[17] N. Suderman, M.I.N. Isa and N.M. Sarbon, The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review, Food Bioscience. 24 (2018), 111-119.

DOI: 10.1016/j.fbio.2018.06.006

Google Scholar

[18] S. Kirdponpattara, M. Phisalaphong and S. Kongruang, Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications, Carbohyd. Polym. 177 (2017), 361-368.

DOI: 10.1016/j.carbpol.2017.08.094

Google Scholar

[19] Khairuddin, E. Pramono, S.B. Utomo, V. Wulandari, A. Zahrotul W and F. Clegg, FTIR studies on the effect of concentration of polyethylene glycol on polimerization of Shellac, J. Phys. 776 (2016), 012053.

DOI: 10.1088/1742-6596/776/1/012053

Google Scholar

[20] P. Wang, H. He, R. Cai, G. Tao, M. Yang, H. Zuo, A. Umar and Y. Wang, Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application, Carbohyd. Polym. 212 (2019), 403-411.

DOI: 10.1016/j.carbpol.2019.02.069

Google Scholar

[21] N, Maftoonazad, H.S. Ramaswamy and M. Marcotte, Application and Evaluation of a Pectin-Based Edible Coating Process for Quality Change Kinetics and Shelf-Life Extension of Lime Fruit (Citrus aurantifolium), J. Food Process. Eng. 30 (2007), 539-563.

DOI: 10.3390/coatings9050285

Google Scholar

[22] W.A. Asfaw, K.D. Tafa and N. Satheesh, Optimization of citron peel pectin and glycerol concentration in the production of edible film using response surface methodology, Heliyon. 9 (2023), e13724.

DOI: 10.1016/j.heliyon.2023.e13724

Google Scholar

[23] P. Hernandez-Munoz, R. Villalobos and A. Chiralt, Effect of cross-linking using aldehydes on properties of glutenin-rich films, Food Hydrocolloid. 18 (2004), 403-411.

DOI: 10.1016/s0268-005x(03)00128-0

Google Scholar

[24] J. Park, J. Nam, H. Yun, H.-J. Jin and H.W. Kwak, Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties, Carbohyd. Polym. 254 (2021), 117317.

DOI: 10.1016/j.carbpol.2020.117317

Google Scholar