Carbon Footprint in Bovine Fat Biodiesel Synthesis - Comparison Using Methanol or Ethanol

Article Preview

Abstract:

Climate change makes the comparison of strategies to mitigate environmental impacts in the production of catalyzed biodiesel derived from animal fat waste a necessity. Transesterification of Bovine Kidney Fat (BKF) into biodiesel is feasible, but the utilized inputs can incur a substantial environmental cost, such as Carbon Footprint (CF). The utilization of Ethanol as a reagent for the transesterification of BKF presents a viable alternative that could influence the Life Cycle Assessment (LCA) of Biodiesel and reduce its CF. This study compares the CF for the LCA of producing 1 kg of Biodiesel for a 1-6 Methanol-BKF and 1-9 Ethanol-BKF ratio, catalyzed by Sodium Hydroxide (NaOH) and Potassium Hydroxide (KOH) at 0.35% at 60°C. The LCA was initially defined following ISO 14067:2018 standards, and subsequently, the Greenhouse Gas (GHG) Emission Inventory was conducted for each stage of Biodiesel manufacturing. Ultimately, CF was calculated using CCalC2 software for the two examined conditions. Five processes were identified in the manufacturing of Biodiesel from BKF in the LCA stages. The CF for Biodiesel derived from BKF with Methanol is 4.36 kg CO2eq/FU, whereas the CF for Biodiesel derived from BKF with Ethanol + 5mol H2O is 0.246 kg CO2eq/FU. Enhanced environmental performance was evidenced using Ethanol + 5mol H2O for the LCA in BKF Biodiesel manufacturing, exhibiting a 1772.35% improvement over Methanol.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1127)

Pages:

49-56

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. U. Rahman et al., "Toxic effects of lead (Pb), cadmium (Cd) and tetracycline (TC) on the growth and development of Triticum aestivum: A meta-analysis," Science of the Total Environment, Review vol. 904, 2023, Art. no. 166677.

DOI: 10.1016/j.scitotenv.2023.166677

Google Scholar

[2] A. A. Marticorena, B. A. Mandagarán, and E. A. J. I. t. Campanella, "Análisis del Impacto Ambiental de la Recuperación de Metanol en la Producción de Biodiesel usando el Algoritmo de Reducción de Desechos WAR," vol. 21, no. 1, pp.23-30, 2010.

DOI: 10.4067/s0718-07642010000100005

Google Scholar

[3] P. A. Calvo and M. S. C. J. R. M. S. Díaz, "Intoxicación por metanol," vol. 6, no. 9, pp. e701-e701, 2021.

DOI: 10.31434/rms.v6i9.701

Google Scholar

[4] O. S. Stamenković, A. V. Veličković, and V. B. J. F. Veljković, "The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives," vol. 90, no. 11, pp.3141-3155, 2011.

DOI: 10.1016/j.fuel.2011.06.049

Google Scholar

[5] R. Guzatto, D. Defferrari, Q. B. Reiznautt, Í. R. Cadore, and D. J. F. Samios, "Transesterification double step process modification for ethyl ester biodiesel production from vegetable and waste oils," vol. 92, no. 1, pp.197-203, 2012.

DOI: 10.1016/j.fuel.2011.08.010

Google Scholar

[6] R. J. C. Heiden, "Analytical Methodologies for the Determination of Biodiesel Ester Purity Determination of Total Methyl Esters: Final NBB Report Lancaster," p.520320-l.

Google Scholar

[7] D. H. Gómez Miranda, "Aprovechamiento de la grasa bovina del Camal Frigorífico Municipal Ambato para la obtención de biodiésel como combustible de origen animal," Universidad Técnica de Ambato. Facultad de Ciencia e Ingeniería en Alimentos …, 2016.

DOI: 10.34098/2078-3949.41.1.3

Google Scholar

[8] M. F. M. Yusoff, X. Xu, and Z. J. J. o. t. A. O. C. S. Guo, "Comparison of fatty acid methyl and ethyl esters as biodiesel base stock: a review on processing and production requirements," vol. 91, pp.525-531, 2014.

DOI: 10.1007/s11746-014-2443-0

Google Scholar

[9] L. Panichelli, L. Trama, and A. J. U. d. B. A. B. A. Dauriat, "Análisis de Ciclo de Vida (ACV) de la producción de biodiesel (B100) en Argentina," 2006.

Google Scholar

[10] J. S. Requena et al., "Life Cycle Assessment (LCA) of the biofuel production process from sunflower oil, rapeseed oil and soybean oil," vol. 92, no. 2, pp.190-199, 2011.

DOI: 10.1016/j.fuproc.2010.03.004

Google Scholar

[11] F. H. Sobrino, C. R. Monroy, J. L. H. J. R. Pérez, and S. E. Reviews, "Biofuels and fossil fuels: Life Cycle Analysis (LCA) optimisation through productive resources maximisation," vol. 15, no. 6, pp.2621-2628, 2011.

DOI: 10.1016/j.rser.2011.03.010

Google Scholar

[12] E. Audsley et al., "Harmonisation of environmental life cycle assessment for agriculture," vol. 139, no. 1, 1997.

Google Scholar

[13] S. Sala et al., "Recommended life impact assessment methods for ILCD and Environmental Footprint: challenges, opportunities and updates," 2015.

Google Scholar

[14] M. Amin, E. Chung, H. J. I. J. o. E. S. Shah, and Technology, "Effect of different activation agents for activated carbon preparation through characterization and life cycle assessment," vol. 20, no. 7, pp.7645-7656, 2023.

DOI: 10.1007/s13762-022-04472-6

Google Scholar

[15] A. J. T. i. j. o. l. c. a. Ciroth, "ICT for environment in life cycle applications openLCA—A new open source software for life cycle assessment," vol. 12, pp.209-210, 2007.

DOI: 10.1007/s11367-007-0337-1

Google Scholar

[16] P. Caramazana, P. Dunne, M. Gimeno-Fabra, J. McKechnie, E. J. C. O. i. G. Lester, and S. Chemistry, "A review of the environmental impact of nanomaterial synthesis using continuous flow hydrothermal synthesis," vol. 12, pp.57-62, 2018.

DOI: 10.1016/j.cogsc.2018.06.016

Google Scholar

[17] D. NEN, "NEN-EN-ISO 14067: 2018 (en)-Greenhouse gases-Carbon footprint of products-Requirements and guidelines for quantification," 2018.

Google Scholar

[18] R. E. Morales Blas, "Huella de Carbono en el Alcance 1 y 2, utilizando la metodología del GreenHouse Gas Protocol (GHG Protocol) y la Norma ISO 14064-1: 2006, en el Centro de Producción "Productos Unión"," 2018.

DOI: 10.33936/revbasdelaciencia.v7i3.4315

Google Scholar

[19] S. P. Souza, M. T. de Ávila, S. J. b. Pacca, and bioenergy, "Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production," vol. 44, pp.70-79, 2012.

DOI: 10.1016/j.biombioe.2012.04.018

Google Scholar

[20] S. Rinaldi, M. Barbanera, and E. J. S. o. T. T. E. Lascaro, "Assessment of carbon footprint and energy performance of the extra virgin olive oil chain in Umbria, Italy," vol. 482, pp.71-79, 2014.

DOI: 10.1016/j.scitotenv.2014.02.104

Google Scholar

[21] G. Quiroga, C. Rojas Correal, and L. E. Peñaloza Soler, "Transporte, sacrificio y faenado de ganado," 1989.

Google Scholar

[22] M. Bowman, D. Hilligoss, S. Rasmussen, and R. J. H. p. Thomas, "Biodiesel: a renewable and biodegradable fuel," vol. 85, no. 2, p.103, 2006.

Google Scholar

[23] T. Bradley, D. J. M. L. P. M. Maga, and Protocols, "Life cycle analysis of producing microbial lipids and biodiesel: comparison with plant lipids," pp.195-214, 2019.

DOI: 10.1007/978-1-4939-9484-7_13

Google Scholar