Structure and Magnetic Properties of Fe3O4/C Composites Synthesized from Wheat Straw

Article Preview

Abstract:

The porous structure and magnetic properties of nanostructured Fe3O4/C composites based on wheat straw were investigated in this work. The synthesis was carried out by a one- and two-step method using FeCl3 and ZnCl2 as activating agents. X-ray diffraction methods have shown the presence of an additional phase of magnetite Fe3O4 in both synthesized composites, along with the amorphous carbon phase. Magnetic measurements have shown that the composite synthesized in one step has better magnetic properties, in particular, a higher specific saturation magnetisation. However, the samples of the composite synthesized in two steps are characterised by a higher content of micropores and mesopores, which causes an increase in the specific surface area to 884 m2/g compared to 405 m2/g for the samples synthesized in one step. Based on the dependence of the coercive force on the particle diameter in Fe3O4 dispersions, it was found that the average size of the magnetite particles is ~25 nm for both synthesized magnetoresponsive composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1127)

Pages:

83-92

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Owa, Water Pollution: Sources, Effects, Control and Management, Mediterr. J. Soc. Sci. 4 (2013) 65–68.

Google Scholar

[2] O.B. Akpor, B. Muchie, Environmental and public health implications of wastewater quality, Afr. J. Biotechnol. 10 (2011) 2379–2387.

Google Scholar

[3] R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U. Von Gunten, B. Wehrli, Global Water Pollution and Human Health, Annu. Rev. Environ. Resour. 35 (2010) 109–136.

DOI: 10.1146/annurev-environ-100809-125342

Google Scholar

[4] R.S. Juang, R.C. Shiau, Metal Removal from Aqueous Solutions Using Chitosan-Enhanced Membrane Filtration, J.Membr. Sci. 165 (2000) 159–167.

DOI: 10.1016/s0376-7388(99)00235-5

Google Scholar

[5] S. Ahluwalia, D. Goyal, Microbial and Plant Derived Removal of Heavy Metals from Wastewater, Bioresource Technol. J. 98 (2007) 2243–2257.

DOI: 10.1016/j.biortech.2005.12.006

Google Scholar

[6] M. Malovanyy, I. Bordun, H. Sakalova, A. Blazhko, N. Beznosiuk, Adsorption Purification of Wastewater from Chrome Ions and Phosphate Ions with Bentonite, Key Eng. Mater. 925 (2022) 111–116.

DOI: 10.4028/p-8vmxtc

Google Scholar

[7] A.G. Sanchez, E.A. Ayuso, Sorption of Zn, Cd and Cr on Calcite: Application to Purification of Industrial Wastewater, Miner. Eng. J. 15 (2002) 539–547.

DOI: 10.1016/s0892-6875(02)00072-9

Google Scholar

[8] G.T. Tee, X.Y. Gok, W.F. Yong, Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review, Environ Res. 212 (2022) 113248.

DOI: 10.1016/j.envres.2022.113248

Google Scholar

[9] I. Bordun, T. Vasylinych, M. Malovanyy, H. Sakalova, L. Liubchak, L. Luczyt, Study of adsorption of differently charged dyes by carbon adsorbents, Desalin. Water Treat. 288 (2023) 151–158.

DOI: 10.5004/dwt.2023.29332

Google Scholar

[10] N. Jaafarzadeh, B. Kakavandi, A. Takdastan, Powder activated carbon/Fe3O4 hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline: degradation mechanism and kinetic, RSC Advances. 5 (2015) 84718–84728.

DOI: 10.1039/c5ra17953j

Google Scholar

[11] P.M. Godwin, Y. Pan, H. Xiao, M.T. Afzal, Progress in Preparation and Application of Modified Biochar for Improving Heavy Metal Ion Removal From Wastewater, J. Bioresour. Bioprod. 4 (2019) 31–42.

DOI: 10.21967/jbb.v4i1.180

Google Scholar

[12] P. Gorbyk, N. Kusyak, A. Petranovskaya, E. Oranskaya, N. Abramov, N. Opanashchuk, Synthesis and properties of magnetic nanostructures with carbonized surface, Himia, Fizika ta Tehnologia Poverhni. 9 (2018) 176–189. (In Ukrainian)

DOI: 10.15407/hftp09.02.176

Google Scholar

[13] H.M.A. Ghany, Production of a new activated carbon prepared from palm fronds by thermal activation, Int. J. Eng. Tech. Mgmt. Res. 6 (2019) 34–43.

DOI: 10.29121/ijetmr.v6.i4.2019.368

Google Scholar

[14] V. Ptashnyk, I. Bordun, E. Szymczykiewicz, M. Malovanyy, The investigation of the structure of biocarbon synthesized from wheat straw after weakly concentrated phosphoric acid pretreatment, Appl. Nanosci. 13 (2023) 4883–4890.

DOI: 10.1007/s13204-022-02641-0

Google Scholar

[15] J.A. Abudaia, M.O. Sulyman, K.Y. El-Azaby, S.M. Ben-Ali, Adsorption of Pb(II) and Cu(II) from Aqueous Solution onto Activated Carbon Prepared from Date Stones, Int. J. Environ. Sci. Dev. 4 (2013) 191–195.

DOI: 10.7763/ijesd.2013.v4.333

Google Scholar

[16] A.H. El-Sheikh, A.P. Newman, H.K. Al-Daffaee, S. Phull, N. Cresswell, Characterization of Activated Carbon Prepared from a Single Cultivar of Jordanian Olive Stones by Chemical and Physicochemical Techniques, J. Anal. Appl. Pyrolysis. 71 (2004) 151–164.

DOI: 10.1016/s0165-2370(03)00061-5

Google Scholar

[17] R.M. Rafie, Removal of Heavy Metals from Waste Water Using Black Tea Waste, Arab. J. Sci Eng. 37 (2012) 1505–1520.

DOI: 10.1007/s13369-012-0264-8

Google Scholar

[18] A.C.F. Alves, R.V.P. Antero, S.B. de Oliveira, S.A. Ojala, P.S. Scalize, Activated carbon produced from waste coffee grounds for an effective removal of bisphenol-A in aqueous medium. Environ. Sci. Pollut. Res. 26 (2019) 24850–24862.

DOI: 10.1007/s11356-019-05717-7

Google Scholar

[19] K.Y. Foo, B.H. Hameed, Utilization of rice husks as a feedstock for preparation of activated carbon by microweve induced KOH and K2CO3 activation, Bioresour. Technol. 102 (2011) 9814–9817.

DOI: 10.1016/j.biortech.2011.07.102

Google Scholar

[20] Ch. Soloviy, M. Malovanyy, I. Bordun, F. Ivashchyshyn, A. Borysiuk, Yu. Kulyk, Structural, magnetic and adsorption characteristics of magnetically susceptible carbon sorbents based on natural raw materials, J. Water Land Dev. 47 (2020) 160–168.

DOI: 10.24425/jwld.2020.135043

Google Scholar

[21] Q. Zhao, T. Xu, X. Song, S. Nie, S.-E. Choi, C. Si, Preparation and Application in Water Treatment of Magnetic Biochar, Front. Bioeng. Biotechnol. 9 (2021) 769667.

DOI: 10.3389/fbioe.2021.769667

Google Scholar

[22] L.Zh. Lee, M.A.A. Zaini, One-step ZnCl2/FeCl3 composites preparation of magnetic activated carbon for effective adsorption of rhodamine B dye, Toxin Rev. 41 (2022) 64–81.

DOI: 10.1080/15569543.2020.1837172

Google Scholar

[23] Y. Luo, L. Zeng, Y. Zhao, Zh. Zhao, M. Wei, B. Jiang, J. Fan, D. Li, Roles of ZnCl2 and FeCl3 in preparing high performance corn stover-based carbon materials for efficient removal of Cr (VI) from wastewater, J. Water Proc. Engineering. 47 (2022) 102743.

DOI: 10.1016/j.jwpe.2022.102743

Google Scholar

[24] Z.A. Duryagina, R.L. Holyaka, A.K. Borysyuk, The Automated Wide-Range Magnetometer for the Magnetic Phase Analysis of Alloys: Development and Application, Usp. Fiz. Met. 14 (2013) 33–66. (In Ukrainian)

DOI: 10.15407/ufm.14.01.033

Google Scholar

[25] M. Thommes, K. Kaneko, A. Neimark, J. Rodriguez-Reinoso, J. Rouquerol, K. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069.

DOI: 10.1515/pac-2014-1117

Google Scholar

[26] J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K. Sing, Adsorption by powders and porous solids: principles, methodology and applications, second ed. Elsevier / Academic press, Oxford, 2012.

DOI: 10.1016/b978-0-08-097035-6.00001-2

Google Scholar

[27] J. Rouquerol, P. Llewellyn, F. Rouquerol, Is the BET equation applicable to microporous adsorbents?, in: Characterization of Porous Solids VII. P. Lewellyn, F. Rodriguez-Reinoso, J. Rouquerol, N. Seaton (Eds). Stud. Surf. Sci. Catal. 160 (2002) 49–56.

DOI: 10.1016/s0167-2991(07)80008-5

Google Scholar

[28] J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, Cambridge, 2010.

Google Scholar

[29] M.D. Nguyen, H.V. Tran, S. Xu, T.R. Lee, Fe3O4 Nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications, Appl. Sci. 11 (2021) 11301.

DOI: 10.3390/app112311301

Google Scholar

[30] A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14 (2013) 15977–16009.

DOI: 10.3390/ijms140815977

Google Scholar

[31] K.M. Krishnan, Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy, IEEE Trans. Magn. 46 (2010) 2523–2558.

DOI: 10.1109/tmag.2010.2046907

Google Scholar

[32] Q. Lі, Ch.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep. 7 (2017) 1–7.

DOI: 10.1038/s41598-017-09897-5

Google Scholar