[1]
R. Gheorghita Puscaselu, S. Amariei, L. Norocel, and G. Gutt, "New edible packaging material with function in shelf life extension: Applications for the meat and cheese industries," Foods, vol. 9, no. 5, 2020.
DOI: 10.3390/foods9050562
Google Scholar
[2]
S. Sakthivel et al., "Recycled cotton/polyester and polypropylene nonwoven hybrid composite materials for house hold applications," J. Text. Inst., vol. 113, no. 1, p.45–53, 2022.
DOI: 10.1080/00405000.2021.1913862
Google Scholar
[3]
I. Čabalová, A. Ház, J. Krilek, T. Bubeníková, J. Melicherčík, and T. Kuvik, "Recycling of wastes plastics and tires from automotive industry," Polymers (Basel)., vol. 13, no. 13, 2021.
DOI: 10.3390/polym13132210
Google Scholar
[4]
J. L. Mead, Z. Tao, and H. S. Liu, "Insulation materials for wire and cable applications," Rubber Chem. Technol., vol. 75, no. 4, p.701–712, 2002.
DOI: 10.5254/1.3544996
Google Scholar
[5]
R. R. Prabu, S. Usa, K. Udayakumar, M. A. Khan, and S. S. M. A. Majeed, "Electrical insulation characteristics of silicone and EPDM polymeric blends - part I," IEEE Trans. Dielectr. Electr. Insul., vol. 14, no. 5, p.1207–1213, 2007.
DOI: 10.1109/TDEI.2007.4339481
Google Scholar
[6]
S. G. Burnay, "An overview of polymer ageing studies in the nuclear power industry," Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 185, no. 1–4, p.4–7, 2001.
DOI: 10.1016/S0168-583X(01)00757-1
Google Scholar
[7]
J. Vohlidal, "Polymer degradation: A short review," Chem. Teach. Int., vol. 3, no. 2, p.213–220, 2021.
DOI: 10.1515/cti-2020-0015
Google Scholar
[8]
E. Mustafa, R. S. A. Afia, and Z. Á. Tamus, "Condition monitoring uncertainties and thermal - Radiation multistress accelerated aging tests for nuclear power plant cables: A review," Period. Polytech. Electr. Eng. Comput. Sci., vol. 64, no. 1, p.20–32, 2020.
DOI: 10.3311/PPee.14038
Google Scholar
[9]
J. S. Kim, "Evaluation of cable aging degradation based on plant operating condition," J. Nucl. Sci. Technol., vol. 42, no. 8, p.745–753, 2005.
DOI: 10.1080/18811248.2004.9726444
Google Scholar
[10]
A. Plota and A. Masek, "Lifetime Prediction Methods for Degradable Polymeric Materials - a Short Review." Materials, vol. 13, no. 20, 12 Oct. 2020, p.4507.
DOI: 10.3390/ma13204507
Google Scholar
[11]
D. Ghosh and D. Khastgir, "Degradation and Stability of Polymeric High-Voltage Insulators and Prediction of Their Service Life through Environmental and Accelerated Aging Processes," ACS Omega, vol. 3, no. 9, p.11317–11330, 2018.
DOI: 10.1021/acsomega.8b01560
Google Scholar
[12]
International Atomic Energy Agency, "Assessment and management of ageing of major nuclear power plant components important to safety: In-containment instrumentation and control cables V2," Iaea-Tecdoc-1188, vol. II, no. December, 2000, [Online]. Available: https://www-pub.iaea.org/books/IAEABooks/6166/Assessment-and-Management-of-Ageing-of-Major-Nuclear-Power-Plant-Components-Important-to-Safety-In-containment-Instrumentation-and-Control-cables-Volume-II
DOI: 10.3403/30141628u
Google Scholar
[13]
N. Bowler and S. Liu, "Aging mechanisms and monitoring of cable polymers," Int. J. Progn. Heal. Manag., vol. 6, 2015.
DOI: 10.36001/ijphm.2015.v6i3.2287
Google Scholar
[14]
T. Tanaka, "Aging of polymeric and composite insulating materials aspects of interfacial performance in aging," IEEE Trans. Dielectr. Electr. Insul., vol. 9, no. 5, p.704–716, 2002.
DOI: 10.1109/TDEI.2002.1038658
Google Scholar
[15]
S. Kashi et al., "Mechanical, Thermal, and Morphological Behavior of Silicone Rubber during Accelerated Aging," Polym. - Plast. Technol. Eng., vol. 57, no. 16, p.1687–1696, 2018.
DOI: 10.1080/03602559.2017.1419487
Google Scholar
[16]
X. Zhang, Q. Zhang, and J. Zheng, "Effect and mechanism of iron oxide modified carbon nanotubes on thermal oxidative stability of silicone rubber," Compos. Sci. Technol., vol. 99, p.1–7, 2014.
DOI: 10.1016/j.compscitech.2014.05.003
Google Scholar
[17]
L. Leng, Q. Y. Han, and Y. P. Wu, "The aging properties and phase morphology of silica filled silicone rubber/butadiene rubber composites," RSC Adv., vol. 10, no. 34, p.20272–20278, 2020.
DOI: 10.1039/d0ra03045g
Google Scholar
[18]
J. P. Reynders, I. R. Jandrell, and S. M. Reynders, "Review of aging and recovery of silicone rubber insulation for outdoor use," IEEE Trans. Dielectr. Electr. Insul., vol. 6, no. 5, p.620–631, 1999.
DOI: 10.1109/94.798119
Google Scholar
[19]
S. Hong et al., "Molecular degradation mechanism of segmented polyurethane and life prediction through accelerated aging test," Polym. Test., vol. 124, no. May, p.108086, 2023.
DOI: 10.1016/j.polymertesting.2023.108086
Google Scholar
[20]
Hu, Qingyuan, et al. "Performance of Thermal-Oxidative Aging on the Structure and Properties of Ethylene Propylene Diene Monomer (EPDM) Vulcanizates." Polymers, vol. 15, no. 10, 16 May 2023, p.2329–2329.
DOI: 10.3390/polym15102329
Google Scholar
[21]
T. C. Dissipation, Z. Li, and J. Zhang, "The aging property and storage life prediction of The aging property and storage life prediction of EPDM".
DOI: 10.1088/1742-6596/2478/3/032046
Google Scholar
[22]
International Atomic Energy Agency, "Assessing and Managing Cable Ageing in Nuclear Power Plants," Radiat. Damage to Org. Mater. Nucl. React. Radiat. Environ., no. July 1989, p.1, 2012, [Online]. Available: http://www.iaea.org/inis/collection/NCLCollectionStore/_ Public/21/085/21085992.pdf
Google Scholar
[23]
S. Kole, S. Roy, and A. K. Bhowmick, "Interaction between silicone and EPDM rubbers through functionalization and its effect on properties of the blend," Polymer (Guildf)., vol. 35, no. 16, p.3423–3426, 1994.
DOI: 10.1016/0032-3861(94)90904-0
Google Scholar
[24]
S. Kole and D. K. Tripathy, "Morphology and ageing behaviour of silicone-EPDM blends," J. Mater. Sci., vol. 29, no. 9, p.2431–2435, 1994.
DOI: 10.1007/BF00363437
Google Scholar
[25]
M. Pirc, J. Avsec, N. Č. Korošin, U. L. Štangar, and R. C. Korošec, "Cable aging monitoring with differential scanning calorimetry (DSC) in nuclear power plants," Trans. Famena, vol. 42, no. May, p.87–98, 2018.
DOI: 10.21278/TOF.42Si108
Google Scholar
[26]
A. xometry company Thomas, "EPDM vs. Silicone - What's the Difference?" https://www.thomasnet.com/articles/plastics-rubber/epdm-vs-silicone/
Google Scholar
[27]
A. S. Alghamdi and R. K. Desuqi, "A study of expected lifetime of XLPE insulation cables working at elevated temperatures by applying accelerated thermal ageing," Heliyon, vol. 6, no. 1, p. e03120, 2020.
DOI: 10.1016/j.heliyon.2019.e03120
Google Scholar
[28]
L. Kunheng, "Rubber aging life prediction based on interpolation and improved time-temperature superposition principle Rubber aging life prediction based on interpolation and improved time-temperature superposition principle" Materials Research Express, vol. 9, no. 1, 1 Jan. 2022, p.015301.
DOI: 10.1088/2053-1591/ac45ba
Google Scholar
[29]
R. L. Feller, research in conservation.
Google Scholar
[30]
L. Song and J. Chen, "Lifetime prediction of silicone rubber cold shrinkable joint based on accelerated thermal aging," p.20–23, 2016.
DOI: 10.1109/ichve.2016.7800731
Google Scholar
[31]
T. Aging and A. Munajad, "Fourier Transform Infrared ( FTIR ) Spectroscopy Analysis of Transformer Paper in Mineral Oil-Paper Composite Insulation under Accelerated," 2018.
DOI: 10.3390/en11020364
Google Scholar
[32]
M. R. Khowja, G. Turabee, P. Giangrande, S. Member, and V. Madonna, "Lifetime Estimation of Enameled Wires Under Accelerated Thermal Aging Using Curve Fitting Methods," p.18993–19003, 2021.
DOI: 10.1109/ACCESS.2021.3052058
Google Scholar
[33]
A. Ravindran, M. Kamaraj, N. Vasanthmurali, V. Meghavarshini, and M. Balachandran, "Nanosilica reinforced EPDM silicone rubber blends: Experimental and theoretical evaluation of mechanical and solvent sorption properties," Mater. Today Proc., vol. 46, no. xxxx, p.4381–4386, 2019.
DOI: 10.1016/j.matpr.2020.09.666
Google Scholar
[34]
American Society for Testing and Materials. ASTM., "Designation: D 412 – 06a Standard test method for tensile properties of Vulcanized Rubber and Thermoplastic Elastomers—," ASTM D 412-06a, vol. 598, p.143–152, 2018.
Google Scholar
[35]
ASTM International, "Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning," ASTM Stand., vol. D4318-08, p.1–7, 2012.
Google Scholar
[36]
ASTM E1252, "Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis," Annu. B. ASTM Stand., vol. 03, no. Reapproved 2013, p.1–13, 2013.
Google Scholar
[37]
ASTM E1131, "Standard Test Method for Compositional Analysis by Thermogravimetry," ASTM Int., vol. 08, no. Reapproved 2014, p.6, 2015, [Online]. Available: https://compass.astm.org/EDIT/html_annot.cgi?E1131+20
Google Scholar
[38]
American Society for Testing and Materials. ASTM., "Rubber Property—Durometer HardnesMaterials, E. I., Manufacturing, C. B., Hardness, D., & Laboratories, C. (2017). Rubber Property—Durometer Hardness 1Methods, S. T. (2008). Standard Test Methods for Rubber Property — Compression Set 1, i(Reapproved), 1–6.," Astm D 2240, p.1–13, 2017.
DOI: 10.1520/d2240-04
Google Scholar
[39]
S. Azizi, G. Momen, C. Ouellet-Plamondon, and E. David, "Performance improvement of EPDM and EPDM/Silicone rubber composites using modified fumed silica, titanium dioxide and graphene additives," Polym. Test., vol. 84, p.106281, 2020.
DOI: 10.1016/j.polymertesting.2019.106281
Google Scholar
[40]
J. Almond, P. Sugumaar, M. N. Wenzel, G. Hill, and C. Wallis, "Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy," E-Polymers, vol. 20, no. 1, p.369–381, 2020.
DOI: 10.1515/epoly-2020-0041
Google Scholar
[41]
A. Drews, "Standard Test Method for," Man. Hydrocarb. Anal. 6th Ed., vol. 14, no. March, pp.545-545–3, 2008.
DOI: 10.1520/mnl10913m
Google Scholar
[42]
L. Boukezzi, A. Boubakeur, and M. Lallouani, "Life Time Estimation with Different Models of XLPE Insulation Cables under Thermal Ageing," 7th Nat. Conf. High Volt. (CNHT'2009), Sidi Bel Abbes, no. September 2015, p.1–4, 2009.
DOI: 10.1109/icsd.2007.4290774
Google Scholar
[43]
B. S. Aidy Ali, Mina Hosseini, "Heat-aging effects on tensile properties of vulcanized natural rubber," Int. Rev. Mech. Eng., vol. 4, no. 4, p.422–424, 2010.
Google Scholar
[44]
Y. Song, J. Deng, Z. Xu, Y. Nie, and Z. Lan, "Effect of thermal aging on mechanical properties and color difference of glass fiber/polyetherimide (Gf/pei) composites," Polymers (Basel)., vol. 14, no. 1, p.1–10, 2022.
DOI: 10.3390/polym14010067
Google Scholar
[45]
W. S. Read, "IEEE Standards," IEEE Power Eng. Rev., vol. 15, no. 1, p.6–7, 1995.
DOI: 10.1109/MPER.1995.350411
Google Scholar