Effect of Homogenization Cycle on Precipitation of Dispersoids and Abnormal Grain Growth in an Al-Mg-Si Alloy

Article Preview

Abstract:

AA6xxx alloys are used for various automotive and architectural applications where microstructural characteristics are critical to have acceptable final properties. Abnormal Grain Growth (AGG) in these alloys, industrially termed as Peripheral Coarse Grain (PCG) is undesirable and Mn, Cr based non-coherent dispersoids are used to control the extent of PCG. Homogenization soaking temperature and time along with heating rates determine the size, distribution with grains and volume fraction of these dispersoids. In this study the heating rates are varied in lab and industrial setting to assess the effect of aforementioned dispersoid features using SEM and digital microscopy. It is found that higher heating rates lead to coarser and lower area fraction of dispersoids which finally results in markedly large PCG in industrial extrusion. Observed dispersoid features were described based on basic kinetics and Thermo-CalcTM predicted trends of micro-segregation, fraction of dispersoids and fraction of potential nucleating sites (β’-Mg2Si) of dispersoids. A static recrystallization model was used to calculate the driving and retarding pressures based on substructural (EBSD analysis) and dispersoid features (SEM+ image analysis). The predicted recrystallisation response and PCG grain size was in close agreement with the observed values. This study highlights the significance of homogenization heating rates in addition to soaking time and temperature for PCG control.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] The Effect of Heating Rate on the Density and Spatial Distribution of Dispersoids during Homogenisation of 6xxx Aluminium Alloys. Magnus S. Remøe, Knut Marthinsen, Ida Westermann,Ketill Pedersen, Jostein Røyset and Oddvin Reiso. 2017, Materials Science Forum, Vol. 877, pp.322-327.

DOI: 10.4028/www.scientific.net/msf.877.322

Google Scholar

[2] Precipitation behavior of dispersoids in Al-Mg-Si-Cu-Mn-Cr alloy during homogenization annealing. Yi Han, Ke Ma, Chuyan Wang, Hiromi Nagaumi. 2012. 13th International Conference on Aluminum Alloys (ICAA13). pp.1817-1824.

DOI: 10.1002/9781118495292.ch272

Google Scholar

[3] Improved Distribution and Uniformity of a-Al(Mn,Cr)Si Dispersoids in Al-Mg-Si-Cu-Mn (6xxx) Alloys by Two-Step Homogenization. Zhen Li, Jian Qin, Haitao Zhang, Xiaoguo Wang, Bo Zhang,and Hiromi Nagaumi. 2021, Metallurgical and Materials Transactions A, Vol. 52A, pp.3204-3220.

DOI: 10.1007/s11661-021-06243-3

Google Scholar

[4] The elemental distribution and precipitation kinetic of chromium dispersoids in Al-Mg-Si alloys. M. Kenyon, J. Robson, J. Fellowes and Z. Liang. 2018. 16th International Aluminum Alloys Conference (ICAA16).

Google Scholar

[5] Characterization of the Density and Spatial Distribution of Dispersoids in Al-Mg-Si Alloys. Magnus Sætersdal Remøe, IdaWestermann and Knut Marthinsen. 2019, Metals, Vol. 9, p.26.

DOI: 10.3390/met9010026

Google Scholar

[6] Dispersoid Precipitation and Process Modelling in Zirconium Containing Commercial Aluminium Alloys. Prangnell, J. D. Robson and P. B. 2001, Acta Materialia, Vol. 49, pp.599-613.

DOI: 10.1016/s1359-6454(00)00351-7

Google Scholar

[7] Precipitation process of AI-Mn and AI-Cr supersaturated solid solution in presence of age hardening phases. Hirasawa, H. 1975, Scripta Metallurgica, Vol. 9, pp.955-958.

DOI: 10.1016/0036-9748(75)90551-7

Google Scholar

[8] Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys. Lars Logaard, Nils Ryum. 2000, Materials Science and Engineering, Vol. 283, p.144–152.

DOI: 10.1016/s0921-5093(00)00734-6

Google Scholar

[9] The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Ke Huang, Knut Marthinsen, Qinglong Zhao, Roland E. Logé. 2018, Progress in Materials Science, Vol. 92, pp.284-259.

DOI: 10.1016/j.pmatsci.2017.10.004

Google Scholar

[10] The effect of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains. P.J. Apps, M. Berta, P.B Prangnell. 499-511, s.l. : Acta Materialia, 2005, Vol. 53.

DOI: 10.1016/j.actamat.2004.09.042

Google Scholar

[11] Quantitative analysis of influence of α-Al(MnFeCr)Si dispersoids on hot deformation and microstructural evolution of Al−Mg−Si alloys. Hiromi Nagaumi, Jian Qin, Cheng-bin Yu, Xiao-guo Wang, Lin-sheng Wang. 2022, Transactions of Non-Ferrous Scoiety of China, Vol. 32, pp.1805-1821.

DOI: 10.1016/s1003-6326(22)65910-7

Google Scholar

[12] Effect of Dispersoids on the Microstructure Evolution in Al-Mg-Si Alloys. Michael Kenyon, Joseph Robson, Jonathan Fellowes and Zeqin Liang. 2019, Advanced Engineering Materials, Vol. 21, p.1800494.

DOI: 10.1002/adem.201800494

Google Scholar

[13] Mechanism of the formation of peripheral coarse grain structure in hot extrusion of Al-4.5Zn-1Mg. A. R. Eivani, J. Zhou & J. Duszczyk. 12, 2016, Philosophical Magazine, Vol. 96, pp.1188-1196.

DOI: 10.1080/14786435.2016.1157637

Google Scholar

[14] Surface grain structure development during indirect extrusion of 6xxx aluminium alloys. W. H. Van Geertruyden, W. Z. Misiolek, P.T Wang. 2005, Journal of Materials Science, Vol. 40, pp.3861-3863.

DOI: 10.1007/s10853-005-2545-z

Google Scholar

[15] Evolution of Surface Recrystallization during Indirect Extrusion of 6xxx Aluminum Alloys. W. H. Van Geertruyden, H. M. Browne, W. Z. Misiolek. 2005, METALLURGICAL AND MATERIALS TRANSACTIONS A, Vol. 36A, p.1050.

DOI: 10.1007/s11661-005-0298-6

Google Scholar

[16] The Effect of Die Bearing Geometry on Surface Recrystallization During Extrusion of an Al-Mg-Si-Mn Alloy. Y. Mahmoodkhani, J. Chen, M.A. Wells, W.J. Poole, and N.C. Parson. 2019, METALLURGICAL AND MATERIALS TRANSACTIONS A, Vol. 50A, p.5324.

DOI: 10.1007/s11661-019-05437-0

Google Scholar

[17] Influence of different homogenization heat treatments on the microstructure and hot flow stress of the aluminum alloy AA6082. Aurel Ramon Arnoldt, Andreas Schiffl, Heinz Werner Hoppel,Johannes Albert Osterreicher. 2022, Materials Characterization, Vol. 191, p.112129.

DOI: 10.1016/j.matchar.2022.112129

Google Scholar

[18] Dispersoid Formation and Recrystallization Behavior. Rong Hu, Tomo Ogura, Hiroyasu Tezuka, Tatsuo Sato and Qing Liu. 237-243, s.l. : J. Mater. Sci. Technol, 2010, Vol. 26(3).

Google Scholar

[19] Fiji: an open-source platform for biological-image analysis. Schindelin, J., Arganda-Carreras, I., Frise, E. et al. 2012, Nature Methods, pp.676-682.

DOI: 10.1038/nmeth.2019

Google Scholar

[20] Thermo-Calc Software.

Google Scholar

[21] David A. Porter, Kenneth E. Easterling, and Mohamed Y. Sherif. Phase Transformations in Metals and Alloys. Third. s.l. : CRC Press,Taylor & Francis Group, 2009.

Google Scholar

[22] The precipitation sequence in Al-Mg-Si alloys. G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper. 11, 1998, Acta Metallurgica, Vol. 46, pp.3893-3904.

DOI: 10.1016/s1359-6454(98)00059-7

Google Scholar

[23] Gerhard Neaumann, Cornelis Tuijin. Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data. 1st . s.l. : Elsevier, 2009. ISBN: 978-1-85617-511-1.

Google Scholar

[24] A Unified Physical Model for Creep and Hot Working of Al-Mg Solid Solution Alloys. Paoletti, Stefano Spigarelli and Chiara. 2018, Metals, Vol. 8, p.9.

DOI: 10.3390/met8010009

Google Scholar

[25] Kuijper, Niels. Kinetics of the b-AlFeSi to a-Al(FeMn)Si transformation in Al-Mg-Si alloys. Phd Thesis. s.l. : Tu Delft, 2004.

Google Scholar

[26] Analysis tools for Electron and X-ray diffraction, ATEX software,. Fundenberger, B. Beausir and J.J. s.l. : Université de Lorraine-Metz, France.

Google Scholar

[27] The Effect of the Extrusion Temperature on the Recrystallization Textures of an Extruded AA6005C Alloy. Dr. Kentaro IHARA, Takahiro SHIKAMA, Keiji MORITA. 2013, 69 Kobelco Technology Review, Vol. 31, pp.69-75.

Google Scholar

[28] Comportment mecanique et evolution structurale de l'aluminium au cours d'une deformation a chaud de grande amplitude. Ch. Perdrix, M.Y. Perrin, F. Montheillet. 1981, Mém Et Sci Rev Métall, Vol. 78, p.309.

Google Scholar

[29] An experimental study of the recrystallization mechanism during hot deformation of aluminium. S. Gourdet, F. Montheillet. 2000, Materials Science and Engineering A, Vol. 283, p.274–288.

DOI: 10.1016/s0921-5093(00)00733-4

Google Scholar

[30] F.J. Humphreys, M.Hatherly. Recrystallisation and Related Annealing Phenomenon. s.l. : Elsevier ltd., 2004.

Google Scholar

[31] Growth of cube grains during recrystallisation of aluminium. E. Nes, J.K. Solberg. 1986, Material Science and Technology, Vol. 2, pp.19-21.

DOI: 10.1179/mst.1986.2.1.19

Google Scholar

[32] The Cube Texture Revisited. Hutchinson, Bevis. 2012, Materials Science Forum, Vols. 702-703, pp.3-10.

DOI: 10.4028/www.scientific.net/msf.702-703.3

Google Scholar

[33] Preferential Growth of Cube-Oriented Grains in Partially Annealed and Additionally Rolled Aluminum Foils for Capacitors. Masakazu Kobayashi1, Yoshimasa Takayama and Hajime Kato. 12, 2004, Materials Transactions, Vol. 45, pp.3247-3255.

DOI: 10.2320/matertrans.45.3247

Google Scholar

[34] Cube texture in hot-rolled aluminum alloy 1050 (AA1050)—nucleation and growth behavior. Mohammed H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, A.D. Rollett. 2008, Acta Materialia, Vol. 56, pp.3098-3108.

DOI: 10.1016/j.actamat.2008.02.037

Google Scholar

[35] Dislocation models of crystal grain boundaries. W.T. Read, W. Shockley. 3, 1950, Physical Review, Vol. 78, pp.275-289.

DOI: 10.1103/physrev.78.275

Google Scholar

[36] Subgrain growth in heavily deformed Aluminium-Experimental Investigation and modelling treatment. T Furu, R Orsund, E Nes. 6, 1995, Acta Materialia, Vol. 43, pp.2209-2232.

DOI: 10.1016/0956-7151(94)00410-2

Google Scholar

[37] Interfacial phenomena in metals and alloys. Murr, L E. s.l. : Addison-Wesley Publishing Company, 1975.

Google Scholar

[38] Sheppard, T. Extrusion of Aluminium Alloys. s.l. : Kluwer Academic Publishers, 1999.

Google Scholar

[39] Grain Structure Control of Flat Extruded AA6082 Alloy. Trond Furu, Hans Erik Vatne. 2000, Materials Science Forum, Vols. 331-337, pp.843-848.

DOI: 10.4028/www.scientific.net/msf.331-337.843

Google Scholar

[40] On the Zener Drag. E. Nes, N. Ryum and O. Hunder. 1, 1985, Acta Metallurgica, Vol. 33, pp.11-22.

DOI: 10.1016/0001-6160(85)90214-7

Google Scholar

[41] Five Decadesof the Zener Equation. P. A. Manohar, M Ferry and T Chandra. 9, 1998, ISIJ International, Vol. 38, pp.913-924.

DOI: 10.2355/isijinternational.38.913

Google Scholar

[42] The effect of solutes on grain boundary mobility during recrystallization and grain growth in some single-phase aluminium alloys. Y. Huang, F.J. Humphreys. 2012, Materials Chemistry and Physics, Vol. 132, pp.166-174.

DOI: 10.1016/j.matchemphys.2011.11.018

Google Scholar