Feasibility Study of Solid-State Recycling through Direct Hot Rolling of AA5754 Aluminum Chips for Automotive Applications

Article Preview

Abstract:

Recently, researchers have done a lot of efforts to develop new solid-state recycling processes, both experimentally and developing numerical models. This kind of process is energy-saving and environmentally friendly compared to the conventional aluminum recycling process because avoided the melting step. The purpose of this work is to evaluate the feasibility of an innovative solid-state recycling process through direct hot rolling in a non heat-treatable aluminum alloy for automotive applications. AA5754 chips have been produced by turning a bar without the usage of lubricants and compacted with a 150 kN load; the compacted billets were treated at 400 °C and directly hot rolled in several successive passes. Rolled samples are then analyzed in terms of Vickers microhardness and microstructure in both as-rolled and heat treatment conditions, this last was performed at 185°C simulating the process of paint-bake. The produced samples show an excellent bonding between chips.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China 24 (2014) 1995–2002.

Google Scholar

[2] J. Hirsch, Aluminium Alloys for Automotive Application, Mater. Sci. Forum 242 (1997) 33–50.

Google Scholar

[3] J.M. Cullen, J.M. Allwood, Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods, Environ. Sci. Technol. 47 (2013) 3057–3064.

DOI: 10.1021/es304256s

Google Scholar

[4] E. Balomenos, D. Panias, I. Paspaliaris, Energy and Exergy Analysis of the Primary Aluminum Production Processes: A Review on Current and Future Sustainability, Miner. Process. Extr. Metall. Rev. 32 (2011) 69–89.

DOI: 10.1080/08827508.2010.530721

Google Scholar

[5] R.B.H. Tan, H.H. Khoo, An LCA study of a primary aluminum supply chain, J. Clean. Prod. 13 (2005) 607–618.

Google Scholar

[6] D. Brough, H. Jouhara, The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery, Int. J. Thermofluids 1–2 (2020) 100007.

DOI: 10.1016/j.ijft.2019.100007

Google Scholar

[7] G. Olivieri, A. Romani, P. Neri, Environmental and economic analysis of aluminium recycling through life cycle assessment, Int. J. Sustain. Dev. World Ecol. 13 (2006) 269–276.

DOI: 10.1080/13504500609469678

Google Scholar

[8] H. Hatayama, I. Daigo, Y. Matsuno, Y. Adachi, Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology, Resour. Conserv. Recycl. 66 (2012) 8–14.

DOI: 10.1016/j.resconrec.2012.06.006

Google Scholar

[9] B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Review of solid state recycling of aluminum chips, Resour. Conserv. Recycl. 125 (2017) 37–47.

DOI: 10.1016/j.resconrec.2017.06.004

Google Scholar

[10] S. Shamsudin, M. Lajis, Z. Zhong, Solid-state recycling of light metals: A review, Adv. Mech. Eng. 8 (2016) 1–23.

Google Scholar

[11] J.R. Duflou, A.E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K. Kellens, W. Dewulf, D. Paraskevas, Environmental assessment of solid state recycling routes for aluminium alloys: Can solid state processes significantly reduce the environmental impact of aluminium recycling?, CIRP Ann. 64 (2015) 37–40.

DOI: 10.1016/j.cirp.2015.04.051

Google Scholar

[12] W. Tang, A.P. Reynolds, Production of wire via friction extrusion of aluminum alloy machining chips, J. Mater. Process. Technol. 210 (2010) 2231–2237.

DOI: 10.1016/j.jmatprotec.2010.08.010

Google Scholar

[13] M. El Mehtedi, A. Forcellese, T. Mancia, M. Simoncini, S. Spigarelli, A new sustainable direct solid state recycling of AA1090 aluminum alloy chips by means of friction stir back extrusion process, Procedia CIRP 79 (2019) 638–643.

DOI: 10.1016/j.procir.2019.02.062

Google Scholar

[14] M. El Mehtedi, A. Forcellese, M. Simoncini, S. Spigarelli, A sustainable solid state recycling of pure aluminum by means of friction stir extrusion process (FSE), AIP Conference Proceedings (2018) 1960(1):030004.

DOI: 10.1063/1.5034847

Google Scholar

[15] M. Sharifzadeh, M. ali Ansari, M. Narvan, R.A. Behnagh, A. Araee, M.K. Besharati Givi, Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir extrusion, Trans. Nonferrous Met. Soc. China 25 (2015) 1847–1855.

DOI: 10.1016/s1003-6326(15)63791-8

Google Scholar

[16] D. Baffari, G. Buffa, D. Campanella, L. Fratini, A.P. Reynolds, Process mechanics in Friction Stir Extrusion of magnesium alloys chips through experiments and numerical simulation, J. Manuf. Process. 29 (2017) 41–49.

DOI: 10.1016/j.jmapro.2017.07.010

Google Scholar

[17] D. Baffari, G. Buffa, D. Campanella, L. Fratini, Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties, Procedia Manuf. 15 (2018) 280–286.

DOI: 10.1016/j.promfg.2018.07.220

Google Scholar

[18] G. Ingarao, D. Baffari, E. Bracquene, L. Fratini, J. Duflou, Energy Demand Reduction Of Aluminum Alloys Recycling Through Friction Stir Extrusion Processes Implementation, Procedia Manuf. 33 (2019) 632–638.

DOI: 10.1016/j.promfg.2019.04.079

Google Scholar

[19] D. Baffari, A.P. Reynolds, A. Masnata, L. Fratini, G. Ingarao, Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization, J. Manuf. Process. 43 (2019) 63–69.

DOI: 10.1016/j.jmapro.2019.03.049

Google Scholar

[20] M. El Mehtedi, P. Buonadonna, M. Carta, R. El Mohtadi, A. Mele, D. Morea, Sustainability Study of a New Solid-State Aluminum Chips Recycling Process: A Life Cycle Assessment Approach. Sustainability 15(14) (2023) 11434.

DOI: 10.3390/su151411434

Google Scholar

[21] D. Baffari, G. Buffa, G. Ingarao, A. Masnata, L. Fratini, Aluminium sheet metal scrap recycling through friction consolidation, Procedia Manuf. 29 (2019) 560–566.

DOI: 10.1016/j.promfg.2019.02.134

Google Scholar

[22] B. Verlinden, Severe plastic deformation of metals, Metal.-J. Metall. 11 (2005) 165–182.

Google Scholar

[23] T. Ying, M. Zheng, X. Hu, K. Wu, Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP, Trans. Nonferrous Met. Soc. China 20 (2010) s604–s607.

DOI: 10.1016/s1003-6326(10)60547-x

Google Scholar

[24] J. Krolo, B. Lela, I. Dumanić, F. Kozina, Statistical Analysis of the Combined ECAP and Heat Treatment for Recycling Aluminum Chips Without Remelting, Metals 9 (2019) 660.

DOI: 10.3390/met9060660

Google Scholar

[25] J. Krolo, B. Lela, Z. Švagelj, S. Jozić, Adaptive neuro-fuzzy and regression models for predicting microhardness and electrical conductivity of solid-state recycled EN AW 6082, Int. J. Adv. Manuf. Technol. 100 (2019) 2981–2993.

DOI: 10.1007/s00170-018-2893-x

Google Scholar

[26] M. Haase, N. Ben Khalifa, A.E. Tekkaya, W.Z. Misiolek, Improving mechanical properties of chip-based aluminum extrudates by integrated extrusion and equal channel angular pressing (iECAP), Mater. Sci. Eng. A 539 (2012) 194–204.

DOI: 10.1016/j.msea.2012.01.081

Google Scholar

[27] W.Z. Misiolek, M. Haase, N. Ben Khalifa, A.E. Tekkaya, M. Kleiner, High quality extrudates from aluminum chips by new billet compaction and deformation routes, CIRP Ann. 61 (2012) 239–242.

DOI: 10.1016/j.cirp.2012.03.113

Google Scholar

[28] K. Suzuki, X.S. Huang, A. Watazu, I. Shigematsu, N. Saito, Recycling of 6061 Aluminum Alloy Cutting Chips Using Hot Extrusion and Hot Rolling, Mater. Sci. Forum 544–545 (2007) 443–446.

DOI: 10.4028/www.scientific.net/msf.544-545.443

Google Scholar

[29] R. Chiba, T. Nakamura, M. Kuroda, Solid-state recycling of aluminium alloy swarf through cold profile extrusion and cold rolling, J. Mater. Process. Technol. 211 (2011) 1878–1887.

DOI: 10.1016/j.jmatprotec.2011.06.010

Google Scholar

[30] J.M. Allwood, Y. Huang, C.Y. Barlow, Recycling scrap aluminium by cold-bonding, (2005)

Google Scholar

[31] Z. Zhang, J. Liang, T. Xia, Y. Xie, S.L.I. Chan, J. Wang, D. Zhang, Effects of Oxide Fragments on Microstructure and Mechanical Properties of AA6061 Aluminum Alloy Tube Fabricated by Thermomechanical Consolidation of Machining Chips, Materials 16 (2023) 1384.

DOI: 10.3390/ma16041384

Google Scholar

[32] M. Cabibbo, E. Santecchia, V. di Pompeo, M.L. Gatto, S. Spigarelli, Tailoring the Microstructure of an AA5754 Aluminum Alloy by Tuning the Combination of Heat Treatment, Friction Stir Welding, and Cold Rolling, Metals 12 (2022) 1675.

DOI: 10.3390/met12101675

Google Scholar

[33] Y. Chino, T. Hoshika, J.-S. Lee, M. Mabuchi, Mechanical properties of AZ31 Mg alloy recycled by severe deformation, J. Mater. Res. 21 (2006) 754–760.

DOI: 10.1557/jmr.2006.0090

Google Scholar