[1]
J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China 24 (2014) 1995–2002.
Google Scholar
[2]
J. Hirsch, Aluminium Alloys for Automotive Application, Mater. Sci. Forum 242 (1997) 33–50.
Google Scholar
[3]
J.M. Cullen, J.M. Allwood, Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods, Environ. Sci. Technol. 47 (2013) 3057–3064.
DOI: 10.1021/es304256s
Google Scholar
[4]
E. Balomenos, D. Panias, I. Paspaliaris, Energy and Exergy Analysis of the Primary Aluminum Production Processes: A Review on Current and Future Sustainability, Miner. Process. Extr. Metall. Rev. 32 (2011) 69–89.
DOI: 10.1080/08827508.2010.530721
Google Scholar
[5]
R.B.H. Tan, H.H. Khoo, An LCA study of a primary aluminum supply chain, J. Clean. Prod. 13 (2005) 607–618.
Google Scholar
[6]
D. Brough, H. Jouhara, The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery, Int. J. Thermofluids 1–2 (2020) 100007.
DOI: 10.1016/j.ijft.2019.100007
Google Scholar
[7]
G. Olivieri, A. Romani, P. Neri, Environmental and economic analysis of aluminium recycling through life cycle assessment, Int. J. Sustain. Dev. World Ecol. 13 (2006) 269–276.
DOI: 10.1080/13504500609469678
Google Scholar
[8]
H. Hatayama, I. Daigo, Y. Matsuno, Y. Adachi, Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology, Resour. Conserv. Recycl. 66 (2012) 8–14.
DOI: 10.1016/j.resconrec.2012.06.006
Google Scholar
[9]
B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Review of solid state recycling of aluminum chips, Resour. Conserv. Recycl. 125 (2017) 37–47.
DOI: 10.1016/j.resconrec.2017.06.004
Google Scholar
[10]
S. Shamsudin, M. Lajis, Z. Zhong, Solid-state recycling of light metals: A review, Adv. Mech. Eng. 8 (2016) 1–23.
Google Scholar
[11]
J.R. Duflou, A.E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K. Kellens, W. Dewulf, D. Paraskevas, Environmental assessment of solid state recycling routes for aluminium alloys: Can solid state processes significantly reduce the environmental impact of aluminium recycling?, CIRP Ann. 64 (2015) 37–40.
DOI: 10.1016/j.cirp.2015.04.051
Google Scholar
[12]
W. Tang, A.P. Reynolds, Production of wire via friction extrusion of aluminum alloy machining chips, J. Mater. Process. Technol. 210 (2010) 2231–2237.
DOI: 10.1016/j.jmatprotec.2010.08.010
Google Scholar
[13]
M. El Mehtedi, A. Forcellese, T. Mancia, M. Simoncini, S. Spigarelli, A new sustainable direct solid state recycling of AA1090 aluminum alloy chips by means of friction stir back extrusion process, Procedia CIRP 79 (2019) 638–643.
DOI: 10.1016/j.procir.2019.02.062
Google Scholar
[14]
M. El Mehtedi, A. Forcellese, M. Simoncini, S. Spigarelli, A sustainable solid state recycling of pure aluminum by means of friction stir extrusion process (FSE), AIP Conference Proceedings (2018) 1960(1):030004.
DOI: 10.1063/1.5034847
Google Scholar
[15]
M. Sharifzadeh, M. ali Ansari, M. Narvan, R.A. Behnagh, A. Araee, M.K. Besharati Givi, Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir extrusion, Trans. Nonferrous Met. Soc. China 25 (2015) 1847–1855.
DOI: 10.1016/s1003-6326(15)63791-8
Google Scholar
[16]
D. Baffari, G. Buffa, D. Campanella, L. Fratini, A.P. Reynolds, Process mechanics in Friction Stir Extrusion of magnesium alloys chips through experiments and numerical simulation, J. Manuf. Process. 29 (2017) 41–49.
DOI: 10.1016/j.jmapro.2017.07.010
Google Scholar
[17]
D. Baffari, G. Buffa, D. Campanella, L. Fratini, Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties, Procedia Manuf. 15 (2018) 280–286.
DOI: 10.1016/j.promfg.2018.07.220
Google Scholar
[18]
G. Ingarao, D. Baffari, E. Bracquene, L. Fratini, J. Duflou, Energy Demand Reduction Of Aluminum Alloys Recycling Through Friction Stir Extrusion Processes Implementation, Procedia Manuf. 33 (2019) 632–638.
DOI: 10.1016/j.promfg.2019.04.079
Google Scholar
[19]
D. Baffari, A.P. Reynolds, A. Masnata, L. Fratini, G. Ingarao, Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization, J. Manuf. Process. 43 (2019) 63–69.
DOI: 10.1016/j.jmapro.2019.03.049
Google Scholar
[20]
M. El Mehtedi, P. Buonadonna, M. Carta, R. El Mohtadi, A. Mele, D. Morea, Sustainability Study of a New Solid-State Aluminum Chips Recycling Process: A Life Cycle Assessment Approach. Sustainability 15(14) (2023) 11434.
DOI: 10.3390/su151411434
Google Scholar
[21]
D. Baffari, G. Buffa, G. Ingarao, A. Masnata, L. Fratini, Aluminium sheet metal scrap recycling through friction consolidation, Procedia Manuf. 29 (2019) 560–566.
DOI: 10.1016/j.promfg.2019.02.134
Google Scholar
[22]
B. Verlinden, Severe plastic deformation of metals, Metal.-J. Metall. 11 (2005) 165–182.
Google Scholar
[23]
T. Ying, M. Zheng, X. Hu, K. Wu, Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP, Trans. Nonferrous Met. Soc. China 20 (2010) s604–s607.
DOI: 10.1016/s1003-6326(10)60547-x
Google Scholar
[24]
J. Krolo, B. Lela, I. Dumanić, F. Kozina, Statistical Analysis of the Combined ECAP and Heat Treatment for Recycling Aluminum Chips Without Remelting, Metals 9 (2019) 660.
DOI: 10.3390/met9060660
Google Scholar
[25]
J. Krolo, B. Lela, Z. Švagelj, S. Jozić, Adaptive neuro-fuzzy and regression models for predicting microhardness and electrical conductivity of solid-state recycled EN AW 6082, Int. J. Adv. Manuf. Technol. 100 (2019) 2981–2993.
DOI: 10.1007/s00170-018-2893-x
Google Scholar
[26]
M. Haase, N. Ben Khalifa, A.E. Tekkaya, W.Z. Misiolek, Improving mechanical properties of chip-based aluminum extrudates by integrated extrusion and equal channel angular pressing (iECAP), Mater. Sci. Eng. A 539 (2012) 194–204.
DOI: 10.1016/j.msea.2012.01.081
Google Scholar
[27]
W.Z. Misiolek, M. Haase, N. Ben Khalifa, A.E. Tekkaya, M. Kleiner, High quality extrudates from aluminum chips by new billet compaction and deformation routes, CIRP Ann. 61 (2012) 239–242.
DOI: 10.1016/j.cirp.2012.03.113
Google Scholar
[28]
K. Suzuki, X.S. Huang, A. Watazu, I. Shigematsu, N. Saito, Recycling of 6061 Aluminum Alloy Cutting Chips Using Hot Extrusion and Hot Rolling, Mater. Sci. Forum 544–545 (2007) 443–446.
DOI: 10.4028/www.scientific.net/msf.544-545.443
Google Scholar
[29]
R. Chiba, T. Nakamura, M. Kuroda, Solid-state recycling of aluminium alloy swarf through cold profile extrusion and cold rolling, J. Mater. Process. Technol. 211 (2011) 1878–1887.
DOI: 10.1016/j.jmatprotec.2011.06.010
Google Scholar
[30]
J.M. Allwood, Y. Huang, C.Y. Barlow, Recycling scrap aluminium by cold-bonding, (2005)
Google Scholar
[31]
Z. Zhang, J. Liang, T. Xia, Y. Xie, S.L.I. Chan, J. Wang, D. Zhang, Effects of Oxide Fragments on Microstructure and Mechanical Properties of AA6061 Aluminum Alloy Tube Fabricated by Thermomechanical Consolidation of Machining Chips, Materials 16 (2023) 1384.
DOI: 10.3390/ma16041384
Google Scholar
[32]
M. Cabibbo, E. Santecchia, V. di Pompeo, M.L. Gatto, S. Spigarelli, Tailoring the Microstructure of an AA5754 Aluminum Alloy by Tuning the Combination of Heat Treatment, Friction Stir Welding, and Cold Rolling, Metals 12 (2022) 1675.
DOI: 10.3390/met12101675
Google Scholar
[33]
Y. Chino, T. Hoshika, J.-S. Lee, M. Mabuchi, Mechanical properties of AZ31 Mg alloy recycled by severe deformation, J. Mater. Res. 21 (2006) 754–760.
DOI: 10.1557/jmr.2006.0090
Google Scholar