[1]
A. Steude, E. C. Witts, G.B. Miles and M. C. Gather, Arrays of microscopic organic LEDs for high-resolution optogenetics, Sci. Adv. 2 (2016) 1600061-1600068.
DOI: 10.1126/sciadv.1600061
Google Scholar
[2]
H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen and S.T. Wu, Liquid crystal display and organic light-emitting diode display: present status and future perspectives, Sci. and Appl. 7, (2018) 17168-17176.
DOI: 10.1038/lsa.2017.168
Google Scholar
[3]
S.J Zou, Y Shen, F M Xie, J D Chen, Y.Q Li and J.X Tang, Recent advances in organic light emitting diode, Mater. Chem. Front. 4 (2020) 788-820.
DOI: 10.1039/c9qm00716d
Google Scholar
[4]
D Cui, S Wang, S Li, Y Liu, X Gao, W Wang and X Dong, Improving the performance of OLEDs by controlling the molecular orientation in charge carrier transport layers, Optic express. 29 (2021) 16845-16856.
DOI: 10.1364/oe.418566
Google Scholar
[5]
M Xie, H Pang, J Wang, Z Cui, R Kwong and S Xia, Charge balance in OLEDs: optimization of Hole-Injection Layer, The society for information display 53 (2022) 561-564.
DOI: 10.1002/sdtp.15549
Google Scholar
[6]
S A Yazdani, F Bencheikh, R Komatsu and A Mikaeili, Balanced electron and hole injection and transport in OLEDs by using transparent electrodes, Japanese journal of appl. phy. 61 ( 2022) 088002-088006.
DOI: 10.35848/1347-4065/ac7e96
Google Scholar
[7]
N Kumar, R Breugelmans, X Jiang, S Ahadzadeh, P Verding, M Daenen, M.V Landeghem, K Vandewal and W Deferme, Organic- inorganic nanoparticle composite as an electron injection/hole blocking layer in organic light emitting diodes for large area lighting applications, Applied surface science 631 ( 2023) 157548-157554.
DOI: 10.1016/j.apsusc.2023.157548
Google Scholar
[8]
A Tiwari and B Kumar, Impact of different anode materials on performance of organic light emitting diodes, Int. J. Thin.Film. Sci. Tec. 11 (2022) 207-211.
DOI: 10.18576/ijtfst/110208
Google Scholar
[9]
W L Huang, S Y Chu and P C Kao, Investigation of improving organic light-emitting diodes efficiency using an ultra-thin ultraviolet-ozone-treated Nb-doped ZnO film as anode buffer layer, Journal of alloys and compound 921 ( 2022) 166033-166040.
DOI: 10.1016/j.jallcom.2022.166033
Google Scholar
[10]
Jianfeng Li, Liangbing Hu,Jun Liu,Lian Wang, Tobin J.Marks and George Gruner, Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes, Appl. Phys. Lett. 93 ( 2008) 083306 -083312.
DOI: 10.1063/1.2970049
Google Scholar
[11]
S.S Swayamprabha, D.K Dubey, Shahnawaz, R.A.K. Yadav, M.R Nagar, A.Sharma, F.C Tung and J H Jou, Approaches for Long Lifetime Organic Light Emitting Diodes, Adv. Sci. 8 (2021) 2002254-2002283.
DOI: 10.1002/advs.202002254
Google Scholar
[12]
S. W. Shi, D. G. Ma and J. B. Peng , Effect of NaCl buffer layer on the performance of organic light-emitting devices (OLEDs), Eur. Phys. J. Appl. Phys 40 ( 2007) 141-144.
DOI: 10.1051/epjap:2007133
Google Scholar
[13]
J. Meyer, A. Shu and M. Kroger, A. Kahn, Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces, Appl. Phys. Lett. 96 (2010) 133308-133312.
DOI: 10.1063/1.3374333
Google Scholar
[14]
S. Negi, P. Mittal and B. Kumar, Impacts of different layers on performance of OLED, Microsystem Technologies. 24 ( 2018) 4981-4988.
DOI: 10.1007/s00542-018-3918-y
Google Scholar
[15]
C. Amruth, M. Pehlevani and G.C. Welch, Organic Light Emitting Diodes (OLEDs) with Slot-Die Coated Functional Layers, Material advance. 2 ( 2021) 628-634.
DOI: 10.1039/d0ma00903b
Google Scholar
[16]
T.H. Yeh, C.C. Lee, C. J. Shih, G. Kumar, S. Biring and S. W. Liu, Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes, Organic Electronics. 59 ( 2018) 266-271.
DOI: 10.1016/j.orgel.2018.05.014
Google Scholar
[17]
S.A kumar, J S Shankar and S K Nay, Environmentally Benign Fouling-Resistant Marine Coatings, Polymer-plastic technology and materials. 58 ( 2019) 498-518.
DOI: 10.1080/03602559.2018.1482922
Google Scholar
[18]
K Monzen, D Maeda, M Higashi and T Endo, Recent development of soluble hole injection material for OLED display, Journal of the society for information technology 28 (2020) 7-12.
DOI: 10.1002/jsid.879
Google Scholar
[19]
A.C., M. Pahlevani and G.C. Welch, Organic light emitting diodes (OLEDs) with slot-die coated functional layers, Mater. Adv. 2 ( 2021) 628-645.
DOI: 10.1039/d0ma00903b
Google Scholar
[20]
G Meng, H.Dai and Q Wang, Highly efficient and stable deep-blue OLEDs based on narrowband emitters featuring an orthogonal spiro-configured indolo[3,2,1-de] acridine structure, Chem. Sci. 13 (2022) 5622-5630.
DOI: 10.1039/d2sc01543a
Google Scholar
[21]
D.N Ram and B Choudhary, Microelectronics Reliability. 144 ( 2023) 114959-114965.
Google Scholar
[22]
T Borthakur and R Sarma, Performance enhancement of top contact pentacene-based organic thin-film transistor (OTFT) using perylene interlayer between organic/electrode interface, Applied Physics A. 123 ( 2017) 207-215.
DOI: 10.1007/s00339-017-0836-2
Google Scholar
[23]
T Borthakur and R Sarma, Top-Contact Pentacene-Based Organic Thin Film Transistor with a Rubrene Layer in between Pentacene-Electrode Interface, ECS Journal of Solid State Science and Technology. 11 ( 2022) 045005-045012.
DOI: 10.1149/2162-8777/ac611a
Google Scholar
[24]
C.L Fan, W.C Lin and H W Chen, Performance enhancement of pentacene-based organic thin-film transistors using 6,13-pentacenequinone as a carrier injection interlayer, Solid-State Electronics. 144 ( 2018) 28-32.
DOI: 10.1016/j.sse.2018.02.012
Google Scholar
[25]
T. Minakata, I. Nagoya and M. Ozaki, Highly ordered and conducting thin film of pentacene doped with iodine vapor, J. Appl. Phys. 69 ( 1991) 7354-7356.
DOI: 10.1063/1.347594
Google Scholar
[26]
A Demir, S Bagchi, S E San and Z Dogruyol, Pentacene based organic thin film transistor with SiO2 gate dielectric, Surface review and letters. 03 ( 2015) 1550038-1550046.
DOI: 10.1142/s0218625x15500389
Google Scholar
[27]
Vineeth Michael, Fabrication of OLED on ITO and FTO substrates, P11287888 (2012) 1-7
Google Scholar
[28]
A Andersson, N Johansson, P Broms, N Y Donald Lupo and W R.Salaneck, Flourine doped tin oxide as an alternative to indium tin oxide in polymer LED, Advanced Materials. 10 ( 1999) 859-865.
DOI: 10.1002/(sici)1521-4095(199808)10:11<859::aid-adma859>3.3.co;2-t
Google Scholar
[29]
Chong Wang, Liang Guo, Mingzhou Lei, Xuefeng Chu and Fan Yang, Effect of Annealing Temperature on Electrical Properties of ZTO Thin-Film Transistors, Nanomaterials 12(14) ( 2022) 2397-2406.
DOI: 10.3390/nano12142397
Google Scholar
[30]
S Burns, J Macleod, T T Do, P Sonar and S D Yambem, Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs, Sci Rep. 20 ( 2017) 40805-40810.
DOI: 10.1038/srep40805
Google Scholar
[31]
K.Sakamoto, H.kuwae, N.Kobayashi, A Nobore, S.Shoji and J.Mizunu , Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide, Nature Scientific report. 8 ( 2018) 2825-2830.
DOI: 10.1038/s41598-018-20978-x
Google Scholar
[32]
L. Jingze, M Yahiro, K Ishida, H Yamadab and K Matsushige, Enhanced performance of organic light emitting device by insertion of conducting/insulating WO3 anodic buffer layer., Synthetic Metals 151 ( 2005) 141–146.
DOI: 10.1016/j.synthmet.2005.03.019
Google Scholar
[33]
Xiaolin Xing, Wenjun, Shuhong Li, Xiaochen Dong and Yunlong Liu, The Optimization of Hole Injection Layer in Organic Light-Emitting Diodes, Nanomaterials 14 (2024) 1-8.
DOI: 10.3390/nano14020161
Google Scholar
[34]
J. Jakabovi, A. Vincze and J. Kova, Evidence of pentacene bulk and thin film phase transformation into an orthorhombic phase by iodine diffusion, Chemical Physics Letters 484 (2011) 299–303.
DOI: 10.1016/j.cplett.2009.11.069
Google Scholar
[35]
D.Alfafa, D.Moraru and A Udhiarto, Fabrication of Organic Light Emitting Diodes (OLEDs) using the Lamination method in a Vacuum-Free Environment, IJECBE. 2 ( 2023) 125–135.
DOI: 10.62146/ijecbe.v1i2.24
Google Scholar
[36]
V.A Timofeev, V.I Mashanov and A.I Nikiforov, Effect of annealing temperature on the morphology, structure, and optical properties of nanostructured SnO (x) films, Material Research Express 7 ( 2020) 15027-15032.
DOI: 10.1088/2053-1591/ab6122
Google Scholar
[37]
W.S Kim, G Kushto and H Kim,Effect of annealing on the electrical properties and morphology of a conducting polymer used as an anode in organic light-emitting devices, Journal of Polymer Science Part B Polymer Physics 41(21) ( 2003) 2522-2528.
DOI: 10.1002/polb.10646
Google Scholar
[38]
H.S. Kang, D.H. Kim and T.W. Kim, Organic light-emitting devices based on conducting polymer treated with benzoic acid, Nature 3885 (2021) 1-8.
DOI: 10.1038/s41598-021-82980-0
Google Scholar
[39]
N Sain, D Sharma and P Choudhary, Organic light emitting diode ( OLED) technology and application, IJEAST 4 (2020) 587-591.
DOI: 10.33564/ijeast.2020.v04i11.103
Google Scholar
[40]
I Glowacki, J Jung and G W Salyga, Role of charge-carrier trapping in organic optoelectronic devices, Display and Imaging 2 ( 2017) 279-319.
Google Scholar