Tailoring SWCNT Elastic Properties for Enhanced Durability in Additive Manufactured Prosthetic Devices

Article Preview

Abstract:

This study focuses on the numerical estimation of the effective Young's modulus of single-walled carbon nanotubes (SWCNT) using a continuum mechanics approach tailored for additive manufacturing applications in prosthetic limbs. In our finite element model, the positions of carbon atoms within the SWCNT are represented as nodes linked by beam elements that embody the geometrical and elastic mechanical properties derived from interatomic forces. These forces are quantitatively assessed by equating them to the total interatomic potential energies of the SWCNT's molecular structure. Employing an equivalent continuum technique, we evaluate the effective elastic properties across various SWCNT configurations and benchmark our findings against existing numerical and experimental data from the literature. Our results, which align closely with published studies, demonstrate the isotropic behaviour of SWCNT and reveal a significant dependence of stiffness on the modelled wall thickness. These insights are critical for the development of enhanced prosthetic limbs through additive manufacturing, where material properties such as stiffness and durability are paramount.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1131)

Pages:

9-14

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Schmitz, A. (2020). Effect of Three-Dimensional Printing with Nanotubes on Impact and Fatigue Resistance. Journal of Engineering Materials and Technology, 142(2), 024501

DOI: 10.1115/1.4044963

Google Scholar

[2] Vijayan, V., Kumar, S. A., Gautham, S., & Masthan, M. M. (2021). Design and analysis of prosthetic foot using additive manufacturing technique. Materials Today: Proceedings.

DOI: 10.1016/j.matpr.2020.07.195

Google Scholar

[3] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature (354), 56-58.

DOI: 10.1038/354056a0

Google Scholar

[4] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[5] Baughman, R. H., Zakhidov, A. A., & de Heer, W. A. (2002). Carbon nanotubes--the route toward applications. Science, 297(5582), 787-792.

DOI: 10.1126/science.1060928

Google Scholar

[6] Dresselhaus, M. S., Dresselhaus, G., & Saito, R. (1995). Physics of carbon nanotubes. Carbon, 33(7), 883-891.

DOI: 10.1016/0008-6223(95)00017-8

Google Scholar

[7] Thostenson, E. T., Li, C., & Chou, T.-W. (2005). Nanocomposites in context. Composites Science and Technology, 65(3), 491-516.

DOI: 10.1016/j.compscitech.2004.11.003

Google Scholar

[8] Yakobson BI, Brabec CJ, Bernholc J. (1996). Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett; 76(14): 2511–4.

DOI: 10.1103/physrevlett.76.2511

Google Scholar

[9] Ru CQ. (2000). Effective bending stiffness of carbon nanotubes. Phys Rev B; 62(15):9973–6.

DOI: 10.1103/physrevb.62.9973

Google Scholar

[10] Ru CQ. (2000). Elastic buckling of single-walled carbon nanotube ropes under high pressure. Phys Rev B; 62(15):10405–8.

DOI: 10.1103/physrevb.62.10405

Google Scholar

[11] Odegard GM, Gates TS, Nicholson LM, Wise KE. (2002). Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol;60(14):1869–80

Google Scholar

[12] Meo M, Rossi M. A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes. Mater Sci Eng A; 454–455:170–7.

DOI: 10.1016/j.msea.2006.11.158

Google Scholar

[13] Rossi M, Meo M. (2009). On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Compos Sci Technol; 69(9): 1394–8.

DOI: 10.1016/j.compscitech.2008.09.010

Google Scholar

[14] Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N., & Treacy, M. M. J. (1998). Young's modulus of single-walled nanotubes. Physical Review B - Condensed Matter and Materials Physics, 58(20), 14013-14019.

DOI: 10.1103/physrevb.58.14013

Google Scholar

[15] Tombler, T. W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., . . . Wu, S. Y. (2000). Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature, 405(6788), 769-772

DOI: 10.1038/35015519

Google Scholar

[16] Liew, K. M., He, X. Q., & Wong, C. H. (2004). On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Materialia, 52(9), 2521-2527

DOI: 10.1016/j.actamat.2004.01.043

Google Scholar

[17] Lu, J. P. (1997). Elastic Properties of Carbon Nanotubes and Nanoropes. Physical Review Letters, 79(7), 1297-1300

DOI: 10.1103/PhysRevLett.79.1297

Google Scholar

[18] Hernandez, E., Goze, C., Bernier, P., & Rubio, A. (1998). Elastic properties of C and BxCyNz composite nanotubes. Physical Review Letters, 80(20), 4502-4505.

Google Scholar

[19] Jin, Y., & Yuan, F. G. (2003). Simulation of elastic properties of single-walled carbon nanotubes. Composites Science and Technology, 63(11), 1507-1515

DOI: 10.1016/s0266-3538(03)00074-5

Google Scholar

[20] Shen, L., & Li, J. (2004). Transversely isotropic elastic properties of single-walled carbon nanotubes. Physical Review B - Condensed Matter and Materials Physics, 69(4), 454141-4541410.

DOI: 10.1103/physrevb.69.045414

Google Scholar

[21] Gupta, S. S., & Batra, R. C. (2008). Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Computational Materials Science, 43(4), 715-723

DOI: 10.1016/j.commatsci.2008.01.032

Google Scholar

[22] Giannopoulos, G. I., Kakavas, P. A., & Anifantis, N. K. (2008). Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach. Computational Materials Science, 41(4), 561-569. Gupta, S. S., & Batra, R. C. (2008). Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Computational Materials Science, 43(4), 715-723. doi: http://dx.doi.org/10.1016/j.commatsci. 2008.01.032

DOI: 10.1016/j.commatsci.2007.05.016

Google Scholar

[23] Cheng, H. C., Liu, Y. L., Hsu, Y. C., & Chen, W. H. (2009). Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. International Journal of Solids and Structures, 46(7-8), 1695-1704

DOI: 10.1016/j.ijsolstr.2008.12.013

Google Scholar