[1]
I. S. Anufriev, "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renew. Sustain. Energy Rev., vol. 138, p.110665, 2021.
DOI: 10.1016/j.rser.2020.110665
Google Scholar
[2]
J. Yan, X. Zheng, X. Lu, Z. Liu, and X. Fan, "Enhanced combustion behavior and NOx reduction performance in a CFB combustor by combining flue gas recirculation with air-staging: Effect of injection position," J. Energy Inst., vol. 96, p.294–309, 2021.
DOI: 10.1016/j.joei.2021.03.012
Google Scholar
[3]
M. Kuang, Z. Li, S. Xu, X. Zhu, Y. Zhang, and Q. Zhu, "Impact of the Overfire Air Location on Combustion Improvement and NOx Abatement of a Down-Fired 350 MWe Utility Boiler with Multiple Injection and Multiple Staging," Energy & Fuels, vol. 25, no. 10, p.4322–4332, Oct. 2011.
DOI: 10.1021/ef2009309
Google Scholar
[4]
I. Nova and E. Tronconi, "Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts," Johnson Matthey Technol. Rev., vol. 59, no. 3, p.221–232, 2014.
DOI: 10.1007/978-1-4899-8071-7
Google Scholar
[5]
Q. Zhao, Z. Zhang, A. Runa, and J. Wu, "Application of SNCR denitration technology in circulating fluidized bed boiler," IOP Conf. Ser. Earth Environ. Sci., vol. 804, no. 4, p.42021, 2021.
DOI: 10.1088/1755-1315/804/4/042021
Google Scholar
[6]
M. Keidar and I. Beilis, Plasma engineering: applications from aerospace to bio and nanotechnology, 2nd ed. Academic Press, 2013.
DOI: 10.1016/B978-0-12-813702-4.00001-6
Google Scholar
[7]
B. Dong, Q. Li, Q. Gan, and X. Zhao, "Removal of simulated NOx from motor vehicle exhaust by high-voltage pulsed discharge coupled with LaMn1-xFexO3 catalyst," J. Environ. Chem. Eng., vol. 8, no. 4, p.103554, 2020.
DOI: 10.1016/j.jece.2019.103554
Google Scholar
[8]
R. Fan, Y. Cai, Y. Shi, and Y. Cui, "Effect of the reaction temperature on the removal of diesel particulate matter by ozone injection," Plasma Chem. Plasma Process., vol. 39, no. 1, p.143–163, 2019.
DOI: 10.1007/s11090-018-9947-6
Google Scholar
[9]
X. Pu et al., "Diesel particulate filter (DPF) regeneration using non-thermal plasma induced by dielectric barrier discharge," J. Energy Inst., vol. 91, no. 5, p.655–667, 2018.
DOI: 10.1016/j.joei.2017.06.004
Google Scholar
[10]
S. Mohapatro and S. Allamsetty, "NOx abatement from filtered diesel engine exhaust using battery-powered high-voltage pulse power supply," High Volt., vol. 2, no. 2, p.69–77, 2017.
DOI: 10.1049/hve.2016.0084
Google Scholar
[11]
S. Yao, "Plasma Reactors for Diesel Particulate Matter Removal," Recent Patents Chem. Eng., vol. 2, no. 1, p.67–75, 2009.
DOI: 10.2174/2211334710902010067
Google Scholar
[12]
T. Q. Vinh, S. Watanabe, T. Furuhata, and M. Arai, "Fundamental study of NOx removal from diesel exhaust gas by dielectric barrier discharge reactor," J. Mech. Sci. Technol., vol. 26, no. 6, p.1921–1928, 2012.
DOI: 10.1007/s12206-012-0402-y
Google Scholar
[13]
P. Talebizadeh, M. Babaie, R. Brown, H. Rahimzadeh, Z. Ristovski, and M. Arai, "The role of non-thermal plasma technique in NOxtreatment: A review," Renew. Sustain. Energy Rev., vol. 40, no. x, p.886–901, 2014.
DOI: 10.1016/j.rser.2014.07.194
Google Scholar
[14]
Q. YU et al., "Cold Plasma-Assisted Selective Catalytic Reduction of NO over B2O3/γ-Al2O3," Chinese J. Catal., vol. 33, no. 4, p.783–789, 2012.
DOI: 10.1016/S1872-2067(11)60362-8
Google Scholar
[15]
B. Jiang et al., "Plasma-enhanced low temperature NH3-SCR of NOx over a Cu-Mn/SAPO-34 catalyst under oxygen-rich conditions," Appl. Catal. B Environ., vol. 286, p.119886, 2021.
DOI: 10.1016/j.apcatb.2021.119886
Google Scholar
[16]
T. Zhu et al., "Selective Catalytic Reduction of NO by NH3 Using a Combination of Non-Thermal Plasma and Mn-Cu/ZSM5 Catalyst," Catalysts, vol. 10, no. 9. 2020.
DOI: 10.3390/catal10091044
Google Scholar
[17]
R. Gholami, C. E. Stere, A. Goguet, and C. Hardacre, "Non-thermal-plasma-activated de-NOx catalysis," Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 376, no. 2110, p.20170054, 2018.
DOI: 10.1098/rsta.2017.0054
Google Scholar
[18]
H. H. Peng, K. L. Pan, S. J. Yu, S. Y. Yan, and M. B. Chang, "Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction," Environ. Sci. Pollut. Res., vol. 23, no. 19, p.19590–19601, 2016.
DOI: 10.1007/s11356-016-7114-2
Google Scholar
[19]
S. H. Oh and T. Triplett, "Reaction pathways and mechanism for ammonia formation and removal over palladium-based three-way catalysts: Multiple roles of CO," Catal. Today, vol. 231, p.22–32, 2014.
DOI: 10.1016/J.CATTOD.2013.11.048
Google Scholar
[20]
A. L. Patterson, "The Scherrer formula for X-ray particle size determination," Phys. Rev., vol. 56, no. 10, p.978, 1939.
DOI: 10.1103/physrev.56.978
Google Scholar
[21]
J. H. Chan, "Impact of low carbon fuel and catalyst on gasoline direct injection engine particulate matter." University of Birmingham, 2020.
Google Scholar
[22]
S. Chiuta and D. G. Bessarabov, "Design and operation of an ammonia-fueled microchannel reactor for autothermal hydrogen production," Catal. Today, vol. 310, p.187–194, 2018.
DOI: 10.1016/j.cattod.2017.05.018
Google Scholar
[23]
P. Glarborg, "The NH3/NO2/O2 system: Constraining key steps in ammonia ignition and N2O formation," Combust. Flame, vol. 257, p.112311, 2023, doi: https://doi.org/10.1016/ j.combustflame.2022.112311.
Google Scholar
[24]
J. Li et al., "A review on combustion characteristics of ammonia as a carbon-free fuel," Front. Energy Res., vol. 9, p.760356, 2021.
Google Scholar
[25]
Y. Liu et al., "NOx removal by non-thermal plasma reduction: experimental and theoretical investigations," Front. Chem. Sci. Eng., vol. 16, no. 10, p.1476–1484, 2022.
DOI: 10.1007/s11705-022-2165-z
Google Scholar
[26]
P. Peng et al., "A review on the non-thermal plasma-assisted ammonia synthesis technologies," J. Clean. Prod., vol. 177, p.597–609, 2018, doi: https://doi.org/10.1016/j.jclepro. 2017.12.229.
Google Scholar
[27]
K.-H. Chung, Y.-K. Park, S.-J. Kim, S.-C. Kim, and S.-C. Jung, "Green hydrogen production from ammonia water by liquid–plasma cracking on solid acid catalysts," Renew. Energy, vol. 216, p.119052, 2023.
DOI: 10.1016/j.renene.2023.119052
Google Scholar
[28]
Y. Hayakawa, S. Kambara, and T. Miura, "Hydrogen production from ammonia by the plasma membrane reactor," Int. J. Hydrogen Energy, vol. 45, no. 56, p.32082–32088, 2020.
DOI: 10.1016/j.ijhydene.2020.08.178
Google Scholar
[29]
R. Stone, Introduction to Internal Combustion Engines, 4th ed. Palgrave Macmillan, 2012.
Google Scholar
[30]
A. Fridman and L. A. Kennedy, Plasma Physics and Engineering, 2nd ed. Boca Raton: CRC Press, 2011.
Google Scholar
[31]
Y. Han and Y. Zhu, "Control of ammonia escape from SNCR flue gas denitrification of circulating fluidized bed boilers in coal-fired power plants," in 2022 9th International Forum on Electrical Engineering and Automation (IFEEA), 2022, p.770–773.
DOI: 10.1109/IFEEA57288.2022.10038116
Google Scholar
[32]
C.-N. Kuo, C.-S. Li, Y.-L. Lai, and S.-I. Yen, "Metal-Doped Mesoporous MnO2-CeO2 Catalysts for Low-Temperature Pre-Oxidation of NO to NO2 in Fast SCR Process," Catalysts, vol. 13, no. 4. 2023.
DOI: 10.3390/catal13040694
Google Scholar