Investigation of the Influence of Bonding Parameters on the Homogenous Diffusion Bonding of Copper

Article Preview

Abstract:

Solid-state diffusion bonding (DB) of Copper-Copper (Cu/Cu) was carried out under varying bonding parameters (time and temperature) in argon shielding gas environment. Initially, the bonding was performed at bonding temperatures of 800, 850, and 900 °C for 60 minutes. Secondly, the bonding was carried out at holding times of 90, 120, and 150 minutes at 900 °C. The microstructural and mechanical properties of the bonding interface were evaluated via lap shear and micro hardness tests, X-ray diffraction, and Optical microscopy. It was found that the optimal bonding parameters for the joint interface was 950 °C for 150 minutes, resulting in maximum shear strength of 133 MPa. The X-ray diffraction also shows the formation of solid solution of Cu without the formation of any intermetallic compounds (IMC). The micro hardness test revealed a maximum hardness of 89 HV at the joint interface. Optical microscopy shows the formation of voids at the joint interface take place due to the Kirkendall effect, which increased with higher temperatures for longer time, and cause a wide diffusion-affected zone (DAZ).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1132)

Pages:

63-70

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Long, B. He, W. Cui, Y. Ji, X. Zhuang, J. Twiefel, Investigations on the mechanism of microweld changes during ultrasonic wire bonding by molecular dynamics simulation, Mater. Des. 192 (2020) 108718. https://doi.org/.

DOI: 10.1016/j.matdes.2020.108718

Google Scholar

[2] L. Zhang, Z. Liu, S.-W. Chen, Y. Wang, W.-M. Long, Y. Guo, S. Wang, G. Ye, W. Liu, Materials, processing and reliability of low temperature bonding in 3D chip stacking, J. Alloys Compd. 750 (2018) 980–995. https://doi.org/.

DOI: 10.1016/j.jallcom.2018.04.040

Google Scholar

[3] H. Park, H. Seo, Y. Kim, S. Park, S.E. Kim, Low-Temperature (260 °C) Solderless Cu–Cu Bonding for Fine-Pitch 3-D Packaging and Heterogeneous Integration, IEEE Trans. Components, Packag. Manuf. Technol. 11 (2021) 565–572.

DOI: 10.1109/TCPMT.2021.3065531

Google Scholar

[4] Y.-P. Huang, Y.-S. Chien, R.-N. Tzeng, K.-N. Chen, Demonstration and Electrical Performance of Cu–Cu Bonding at 150 °C With Pd Passivation, IEEE Trans. Electron Devices. 62 (2015) 2587–2592.

DOI: 10.1109/TED.2015.2446507

Google Scholar

[5] G. Li, Q. Kang, F. Niu, C. Wang, Recent progress on bumpless Cu/SiO2 hybrid bonding for 3D heterogeneous integration, Microelectron. Int. 40 (2023) 115–131.

DOI: 10.1108/MI-07-2022-0121

Google Scholar

[6] G. Gao, L. Mirkarimi, G. Fountain, L. Wang, C. Uzoh, T. Workman, G. Guevara, C. Mandalapu, B. Lee, R. Katkar, Scaling Package Interconnects Below 20µm Pitch with Hybrid Bonding, in: 2018 IEEE 68th Electron. Components Technol. Conf., 2018: p.314–322.

DOI: 10.1109/ECTC.2018.00055

Google Scholar

[7] C.C. Hu, M.F. Chen, W.C. Chiou, D.C.H. Yu, 3D Multi-chip Integration with System on Integrated Chips (SoICTM), in: 2019 Symp. VLSI Technol., 2019: pp. T20–T21.

DOI: 10.23919/VLSIT.2019.8776486

Google Scholar

[8] Y. Kagawa, N. Fujii, K. Aoyagi, Y. Kobayashi, S. Nishi, N. Todaka, S. Takeshita, J. Taura, H. Takahashi, Y. Nishimura, K. Tatani, M. Kawamura, H. Nakayama, T. Nagano, K. Ohno, H. Iwamoto, S. Kadomura, T. Hirayama, Novel stacked CMOS image sensor with advanced Cu2Cu hybrid bonding, in: 2016 IEEE Int. Electron Devices Meet., 2016: p.8.4.1-8.4.4.

DOI: 10.1109/IEDM.2016.7838375

Google Scholar

[9] S. Khan, M. Junaid, T. Shehbaz, F.N. Khan, Influence of Cu interlayer on the interfacial strengthening of the diffusion-bonded SS-304L/IN718, Mater. Lett. 358 (2024) 135829. https://doi.org/.

DOI: 10.1016/j.matlet.2023.135829

Google Scholar

[10] S. Kundu, G. Thirunavukarasu, Diffusion Welding of Ti6Al4V and 17-4 Stainless Steel Using Cu/Ni Microlayers, J. Mater. Eng. Perform. (2022).

DOI: 10.1007/s11665-022-07101-y

Google Scholar

[11] S. Khan, Khadija, M. Junaid, T. Shehbaz, F. Nawaz Khan, N. Naveed, Evaluation of nano indentation behavior of TIG, MIG and diffusion bonded Inconel 718 and austenitic Stainless Steel 316L joint interface, Mater. Lett. (2024) 136952. https://doi.org/.

DOI: 10.1016/j.matlet.2024.136952

Google Scholar

[12] M. Elsa, A. Khorram, O.O. Ojo, M. Paidar, Effect of bonding pressure on microstructure and mechanical properties of aluminium/copper diffusion-bonded joint, Sadhana - Acad. Proc. Eng. Sci. 44 (2019) 1–9.

DOI: 10.1007/s12046-019-1103-3

Google Scholar

[13] S. Khan, Z. Ali, K. Rehman, M. Junaid, Mechanical and Microstructural Characterization of Diffusion-Bonded Copper-Nickel Joint Interface, Adv. Mater. Res. 1179 (2024) 147–155.

DOI: 10.4028/p-k8wUUO

Google Scholar

[14] T. Lin, C. Li, X. Si, X. Li, B. Yang, J. Feng, J. Cao, An investigation on diffusion bonding of Cu/Cu using various grain size of Ni interlayers at low temperature, Materialia. 14 (2020) 100882.

DOI: 10.1016/j.mtla.2020.100882

Google Scholar

[15] H. Tatsumi, C.R. Kao, H. Nishikawa, Impact of crystalline orientation on Cu – Cu solid ‑ state bonding behavior by molecular dynamics simulations, Sci. Rep. (2023) 1–10.

DOI: 10.1038/s41598-023-50427-3

Google Scholar

[16] C. Liu, H. Lin, Y. Huang, Y. Chu, C. Chen, D. Lyu, K. Chen, K. Tu, Low-temperature direct copper-to- copper bonding enabled by creep on ( 111 ) surfaces of nanotwinned Cu, Nat. Publ. Gr. (2015) 1–11.

DOI: 10.1038/srep09734

Google Scholar

[17] K. Shie, A.M. Gusak, K.N. Tu, C. Chen, A kinetic model of copper-to-copper direct bonding under thermal compression, (2021).

DOI: 10.1016/j.jmrt.2021.09.071

Google Scholar

[18] X.-G. Wang, X.-G. Li, C.-G. Wang, Influence of diffusion brazing parameters on microstructure and properties of Cu/Al joints, J. Manuf. Process. 35 (2018) 343–350. https://doi.org/.

DOI: 10.1016/j.jmapro.2018.08.020

Google Scholar

[19] H.-W. Hu, K.-N. Chen, Development of low temperature CuCu bonding and hybrid bonding for three-dimensional integrated circuits (3D IC), Microelectron. Reliab. 127 (2021) 114412. https://doi.org/.

DOI: 10.1016/j.microrel.2021.114412

Google Scholar

[20] D.K. Dwivedi, Joining of Dissimilar Metals by Diffusion Bonding BT - Dissimilar Metal Joining, in: D.K. Dwivedi (Ed.), Springer Nature Singapore, Singapore, 2023: p.245–267.

DOI: 10.1007/978-981-99-1897-3_9

Google Scholar

[21] M. Samouhos, A. Peppas, P. Angelopoulos, M. Taxiarchou, P. Tsakiridis, Optimization of copper thermocompression diffusion bonding under vacuum: Microstructural and mechanical characteristics, Metals (Basel). 9 (2019).

DOI: 10.3390/met9101044

Google Scholar

[22] C. Zhang, A.A. Shirzadi, Diffusion bonding of copper alloy to nickel-based superalloy: effect of heat treatment on the microstructure and mechanical properties of the joints, Sci. Technol. Weld. Join. 26 (2021) 213–219.

DOI: 10.1080/13621718.2021.1882653

Google Scholar

[23] T. Gietzelt, V. Toth, A. Huell, Diffusion Bonding: Influence of Process Parameters and Material Microstructure, Join. Technol. (2016).

DOI: 10.5772/64312

Google Scholar

[24] S. Sebastian, V.A. Suyamburajan, Microstructural analysis of diffusion bonding on copper stainless steel, Mater. Today Proc. 37 (2020) 1706–1712.

DOI: 10.1016/j.matpr.2020.07.244

Google Scholar