Considerations on the Behaviour and Resistance of Aluminium Alloys to Cavitation Erosion

Article Preview

Abstract:

Aluminum alloys are known for their wide application in the automotive, river and marine boat constructions, but also in hydraulic systems (radiators/oil coolers). Their use is made by manufacturing parts directly from the semi-finished state, with or without certain volumetric heat treatments and surface hardening, depending on the functional role and the physical-mechanical characteristics pursued. Some of these parts work in hydrodynamic conditions, where cavitation manifests itself through erosion, such as: propellers of boats and barges, pump rotors in water cooling systems of automobiles. Visual analyzes performed on sailboat and powerboat propellers, after identical durations and operating conditions, showed cavitation erosion damage, different depending on the type of aluminum alloy. As a result, the paper presents and analyzes the behavior and resistance to erosion by vibratory cavitation of 4 types of aluminum alloys in the state of rolled semi-finished products. To highlight the differences in the destruction of structures under the cyclic stresses of cavitational microjets, macro and microscopic images of the eroded structure are used, as well as the curves with the values of the parameters specific to cavitation, recommended by the ASTM G32 -2016 norms and used in the research laboratory's custom. The analysis of the results shows that the resistance of the structure to cavitation erosion is dependent on the type of alloy, the degree of brittle intermetallic compounds and the mechanical properties specific to toughness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1132)

Pages:

21-34

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] https://color-metal.ro/ro/categorii, Color Metal

Google Scholar

[2] I. Bordeasu: Monografia Laboratorului de Cercetare a Eroziunii Prin Cavitatie al Universitatii Politehnica Timisoara (1960–2020); Editura Politehnica Timisoara, Romania, ISBN 978-606-35-0371-9, Timisoara (2020)

DOI: 10.31924/nrsd.v13i2.143

Google Scholar

[3] *** ASTM, Standard G32; Standard Method of Vibratory Cavitation Erosion Test. ASTM: West Conshohocken, PE, USA, (2016)

Google Scholar

[4] I. Mitelea: Materiale inginereşti, Editura Politehnica, Timişoara, Romania, (2009)

Google Scholar

[5] I. Bordeasu, C. Ghera, D. Istrate, L. Salcianu, B. Ghiban, D. Bazavan, L.M. Micu L, D.C. Stroita, A. Suta, I. Tomoiaga, A.N. Luca: Resistance and Behavior to Cavitation Erosion of Semi-Finished Aluminum Alloy 5083, "HIDRAULICA" (No. 4/2021), pp.17-24

DOI: 10.3390/cryst12111538

Google Scholar

[6] I. Bordeaşu: Cavitation erosion on materials used in the construction of hydraulic machines and naval propellers. Scale effects (in Romanian:Eroziunea cavitaţională asupra materialelor utilizate în construcţia maşinilor hidraulice şi elicelor navale. Efecte de scară), PhD Thesis, Timişoara, (1997)

Google Scholar

[7] O. Oanca: Tehnici de optimizare a rezistenţei la eroziunea prin cavitaţie a unor aliaje CuAlNiFeMn destinate execuţiei elicelor navale, Teza de doctorat, Timișoara (2014)

Google Scholar

[8] D. Istrate, B.G. Sbârcea, A.M. Demian, A.D. Buzatu, L. Salcianu, I. Bordeasu, L. M. Micu, C. Ghera, B. Florea and B. Ghiban Correlation between Mechanical Properties—Structural Characteristics and Cavitation Resistance of Cast Aluminum Alloy Type 5083, Crystals (2022)

DOI: 10.3390/cryst12111538

Google Scholar

[9] I. Bordeasu, M.O. Popoviciu, I. Mitelea, V. Balasoiu, B. Ghiban, D. Tucu: Chemical and mechanical aspects of the cavitation phenomena, Rev. Chim., Volume 58, Issue 12, pp.1300-1304 (2007)

Google Scholar

[10] I. Bordeasu, I. Mitelea, L. Salcianu, C.M. Craciunescu: Cavitation Erosion Mechanisms of Solution Treated X5CrNi18-10 Stainless Steels, Journal of Tribology-Transactions of the Asme, vo. 138, no. 3, Article Number 031102, (2016)

DOI: 10.1115/1.4032489

Google Scholar

[11] L.M. Micu, I. Bordeasu, M.O. Popoviciu: A New Model for the Equation Describing the Cavitation Mean Depth Erosion Rate Curve, Rev. Chim. (Bucharest), 68, no. 4, pp.894-898, (2017)

DOI: 10.37358/rc.17.4.5573

Google Scholar

[12] I. Anton: Cavitatia, Vol I, Editura Academiei RSR, Bucuresti, (1984)

Google Scholar

[13] R. Garcia, F.G. Hammitt, R.E. Nystrom: Corelation of cavitation damage with other material and fluid properties, Erosion by Cavitation or Impingement, ASTM, STP 408 Atlantic City, ((1960)

DOI: 10.1520/stp46052s

Google Scholar

[14] I. Mitelea, I. Bordeasu, E. Riemschneider, I.D Utu, C.M Craciunescu: Cavitation erosion improvement following TIG surface-remelting of gray cast iron, Wear, p.496–497, 204282, (2022)

DOI: 10.1016/j.wear.2022.204282

Google Scholar

[15] D. Bordeasu; O. Prostean, C. Hatiegan: Contributions to Modeling, Simulation and Controlling of a Pumping System Powered by a Wind Energy Conversion System, Energies, Vol. 14, No.22, 7696, (2021)

DOI: 10.3390/en14227696

Google Scholar

[16] D. Bordeasu, O. Prostean, I. Filip, F. Dragan, C. Vasar: Modelling, Simulation and Controlling of a Multi-Pump System with Water Storage Powered by a Fluctuating and Intermittent Power Source, Mathematics, Vol. 10, no.21, 4019, (2022)

DOI: 10.3390/math10214019

Google Scholar

[17] D. Bordeasu; O. Prostean, I. Filip, F. Dragan, C. Vasar: Adaptive Control Strategy for a Pumping System Using a Variable Frequency Drive, Machines, Vol.11, No.7, DOI: 10.3390/machines11070688, (2023)

DOI: 10.3390/machines11070688

Google Scholar

[18] D. Bordeasu: Study on the Implementation of an Alternative Solution to the Current Irrigation System, Acta Tech. Napoc. Ser.-Appl. Math. Mech. Eng. vol.65, no.3, pp.593-602, (2022)

Google Scholar

[19] L.M Micu, I. Bordeasu, M.O. Popoviciu, M. Popescu, D. Bordeasu, L.C Salcianu: Influence of volumic heat treatments upon cavitation erosion resistance of duplex X2CrNiMoN 22-5-3 stainless steels, IOP International Conference on Applied Sciences 2014 (ICAS2014), vol.85, 012019, (2015)

DOI: 10.1088/1757-899x/85/1/012019

Google Scholar

[20] N. Tian, G. Wang, Y, Zhou, K. Liu, G. Zhao, L. Zuo: Study of the Portevin-Le Chatelier (PLC) Characteristics of a 5083 Aluminum Alloy Sheet in Two Heat Treatment States, States Mater. Vol. 11, 1533, (2018)

DOI: 10.3390/ma11091533

Google Scholar

[21] H.C. Man, C.T. Kwok, T.M. Yue: Cavitation erosion and corrosion behaviour of laser surface alloyed MMC of SiC and Si3N4 on Al alloy AA6061. Surf. Coat. Technol. Vol. 132, p.11–20, (2000).

DOI: 10.1016/s0257-8972(00)00729-5

Google Scholar

[22] W.J. Tomlinson, S.J. Matthews: Cavitation erosion of aluminium alloys. J. Mater. Sci., vol.29, p.1101–1108, (1994)

Google Scholar

[23] N.I. Kolobnev, L.B. Khokhlatova, D.K. Ryabov: Structure, properties and application of alloys of the Al-Mg-Si-(Cu) system, Met. Sci. Heat. Treat., vol.53, p.440–444, (2012)

DOI: 10.1007/s11041-012-9412-8

Google Scholar

[24] F. Xigang, J. Damin, Z. Li, W. Tao, R. Shiyu: Influence of microstructure on the crack propagation and corrosion resistance of Al–Zn–Mg–Cu alloy 7150. Mater. Charact., vol.58, p.24–28, (2007)

DOI: 10.1016/j.matchar.2006.03.003

Google Scholar

[25] I. Bordeasu, M.O. Popoviciu, L.M. Micu, O.V. Oanca, D. Bordeasu, A. Pugna, C. Bordeasu, Laser beam treatment effect on AMPCO M4 bronze cavitation erosion resistance. IOP Conf. Ser. Mater. Sci. Eng, vol.85, 012005, (2015)

DOI: 10.1088/1757-899x/85/1/012005

Google Scholar

[26] I. Bordeasu, M.O. Popoviciu, C. Patrascoiu, V. Balasoiu: An Analytical Model for the Cavitation Erosion Characteristic Curves Sci. Bul. Politeh. Univ. Timis. Trans. Mech. vol.49, p.253–258, (2004)

Google Scholar