Study on Physical Properties of Silicene Nanoribbons Doped As

Article Preview

Abstract:

The paper presents research findings on the structure of armchair silicene nanoribbons doped with arsenic (As) by using density functional theory and the quantum simulation program VASP. The identified electrical and magnetic properties include the electronic band structure, electronic density of states, charge density distribution, spin density distribution, and wave function characteristics. The results indicate that the ASiAsNR structure exhibits metallic properties. Near the Fermi level, contributions from both Si and As are predominant, with Si contributing more near the Fermi level and As contributing more below it. There is a notable electronic density of states around the Fermi level. The findings also show that the σ bonds formed by Si-3s, Si-3px, Si-3py, As-4s, As-4px, and As-4py orbitals are relatively stronger than the π bonds formed by Si-3pz and As-4pz orbitals. Additionally, a distinct correlation is observed between spin-up and spin-down states around the As atoms.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1134)

Pages:

23-30

Citation:

Online since:

December 2024

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wakabayashi, K., Sasaki, K. I., Nakanishi, T., & Enoki, T. (2010). Electronic states of graphene nanoribbons and analytical solutions. Science and technology of advanced materials, 11(5), 054504.

DOI: 10.1088/1468-6996/11/5/054504

Google Scholar

[2] Dutta, S., & Pati, S. K. (2010). Novel properties of graphene nanoribbons: a review. Journal of Materials Chemistry, 20(38), 8207-8223.

DOI: 10.1039/c0jm00261e

Google Scholar

[3] Marmolejo-Tejada, J. M., & Velasco-Medina, J. (2016). Review on graphene nanoribbon devices for logic applications. Microelectronics Journal, 48, 18-38.

DOI: 10.1016/j.mejo.2015.11.006

Google Scholar

[4] Chen, Z., Narita, A., & Müllen, K. (2020). Graphene nanoribbons: on‐surface synthesis and integration into electronic devices. Advanced Materials, 32(45), 2001893.

DOI: 10.1002/adma.202001893

Google Scholar

[5] Chung, H. C.; Chang, C. P.; Lin, C. Y.; Lin, M. F. (2016). "Electronic and optical properties of graphene nanoribbons in external fields". Physical Chemistry Chemical Physics. 18 (11): 7573–7616.

DOI: 10.1039/c5cp06533j

Google Scholar

[6] Son Y.-W.; Cohen M. L.; Louie S. G. (2006). "Energy Gaps in Graphene Nanoribbons". Physical Review Letters. 97 (21): 216803.

DOI: 10.1103/physrevlett.98.089901

Google Scholar

[7] Jung. J.; Pereg-Barnea T.; MacDonald A. H. (2009). "Theory of Interedge Superexchange in Zigzag Edge Magnetism". Physical Review Letters. 102 (22): 227205.

DOI: 10.1103/physrevlett.102.227205

Google Scholar

[8] Lin, Ming-Fa; Shyu, Feng-Lin (2000). "Optical Properties of Nanographite Ribbons". J. Phys. Soc. Jpn. 69 (11): 3529.

DOI: 10.1143/jpsj.69.3529

Google Scholar

[9] Hsu, Han; Reichl, L.E. (2007). "Selection rule for the optical absorption of graphene nanoribbons". Phys. Rev. B. 76 (4): 045418.

DOI: 10.1103/physrevb.76.045418

Google Scholar

[10] Raifee, Mohammad; Wei Lu; Abhay V. Thomas; Ardavan Zandiatashbar; Javad Rafiee; James M. Tour (16 November 2010). "Graphene nanoribbon composites". ACS Nano. 4 (12): 7415–7420.

DOI: 10.1021/nn102529n

Google Scholar

[11] Song, Y.L., Zhang, Y., Zhang, J. M., & Lu, D. B. (2010). Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. Applied Surface Science, 256(21), 6313-6317.

DOI: 10.1016/j.apsusc.2010.04.009

Google Scholar

[12] Trivedi, S., Srivastava, A., & Kurchania, R. (2014). Electronic and transport properties of silicene nanoribbons. Journal of Computational and Theoretical Nanoscience, 11(3), 789-794.

DOI: 10.1166/jctn.2014.3429

Google Scholar

[13] Ferri, M., Fratesi, G., Onida, G., & Debernardi, A. (2019). Ab initio study of the structural, electronic, magnetic, and optical properties of silicene nanoribbons. Physical Review B, 99(8), 085414.

DOI: 10.1103/physrevb.99.085414

Google Scholar

[14] Zhao, Y.C., & Ni, J. (2014). Spin-semiconducting properties in silicene nanoribbons. Physical Chemistry Chemical Physics, 16(29), 15477-15482.

DOI: 10.1039/c4cp01549e

Google Scholar

[15] Luan, H. X., Zhang, C. W., Zheng, F. B., & Wang, P. J. (2013). First-principles study of the electronic properties of B/N atom doped silicene nanoribbons. The Journal of Physical Chemistry C, 117(26), 13620-13626.

DOI: 10.1021/jp4005357

Google Scholar

[16] Ma, L., Zhang, J.M., Xu, K.W., & Ji,V. (2013). Structural and electronic properties of substitutionally doped armchair silicene nanoribbons. Physica B: Condensed Matter, 425, 66-71.

DOI: 10.1016/j.physb.2013.05.022

Google Scholar

[17] Zheng, F.B., Zhang, C.W., Yan, S. S., & Li, F. (2013). Novel electronic and magnetic properties in N or B doped silicene nanoribbons. Journal of Materials Chemistry C, 1(15), 2735-2743.

DOI: 10.1039/c3tc30097h

Google Scholar

[18] Tien, Tran Minh. (2023), "Research on the structural and electronic properties of silicene nanoribbon material adsorpted lithium." Materials Today: Proceedings .

DOI: 10.1016/j.matpr.2023.06.297

Google Scholar

[19] Tien, Tran Minh. (2024),"Adsorption of alkaline metals (Li, Na, K) on armchair silicene nanoribbons." Materials Today: Proceedings.

DOI: 10.1016/j.matpr.2024.04.077

Google Scholar

[20] Zhang, J.M., Zheng, F. L., Zhang, Y., & Ji, V. (2010). First-principles study on electronic properties of SiC nanoribbon. Journal of materials science, 45, 3259-3265.

DOI: 10.1007/s10853-010-4335-5

Google Scholar

[21] Alaal, N., Loganathan, V., Medhekar, N., & Shukla, A. (2016). First principles many-body calculations of electronic structure and optical properties of SiC nanoribbons. Journal of Physics D: Applied Physics, 49(10), 105306.

DOI: 10.1088/0022-3727/49/10/105306

Google Scholar

[22] Zhang, J. M., Song, W. T., Zhang, J., & Xu, K. W. (2014). Dangling bond modulating the electronic and magnetic properties of zigzag SiGe nanoribbon. Physica E: Low-dimensional Systems and Nanostructures, 58, 1-5.

DOI: 10.1016/j.physe.2013.11.009

Google Scholar

[23] Saraswat, V., Yamamoto, Y., Kim, H. J., Jacobberger, R. M., Jinkins, K. R., Way, A. J., ... & Arnold, M. S. (2019). Synthesis of armchair graphene nanoribbons on germanium-on-silicon. The Journal of Physical Chemistry C, 123(30), 18445-18454.

DOI: 10.1021/acs.jpcc.9b04390

Google Scholar

[24] Damizadeh, S., Nayeri, M., Kalantari Fotooh, F., & Fotoohi, S. (2020). Electronic and Optical Properties of SnGe and SnC Nanoribbons: A First-Principles Study. Journal of Optoelectronical Nanostructures, 5(4), 67-86.

DOI: 10.1088/2053-1591/ab2a5a

Google Scholar

[25] Somaiya, R. N., Sonvane, Y. A., & Gupta, S. K. (2020). Exploration of the strain and thermoelectric properties of hexagonal SiX (X= N, P, As, Sb, and Bi) monolayers. Physical Chemistry Chemical Physics, 22(7), 3990-3998.

DOI: 10.1039/d0cp00002g

Google Scholar

[26] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6 (1996.)1.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[27] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,  Phys. Rev. B. 54 (1996)16.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[28] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 18.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[29] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999)

DOI: 10.1103/physrevb.59.1758

Google Scholar