Effect of Loading Speed on Tensile Property of Single Flax Yarn/Shellac Green Composite Material

Article Preview

Abstract:

In this study, tensile property of green composite material using single flax yarn and shellac resin under loading speed was investigated for safety of sustainable structural materials. The molding method was compression molding method. Static tensile tests of single flax yarn and green composite material were conducted under constant temperature and humidity room. The test speed was 10-100 mm/min. Following conclusions were obtained. Tensile strength and Young’s modulus of single flax yarn and green composite material increased with an increase of test speed. From fracture observation, large damage of fiber in the green composite material at 10 mm/min and 100 mm/min did not occur after static tensile tests. But damage of fiber in flax yarn was found when static tensile tests of single flax yarns at 10 mm/min and 100 mm/min were conducted. Therefore, the effect of loading speed on tensile property of green composite material might be affected by viscoelasticity of flax fiber and matrix.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1134)

Pages:

33-38

Citation:

Online since:

December 2024

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on https://www.jeccomposites.com/news/spotted-by-jec/fibrous-tectonics-towards- bio-based-and-bio-inspired-architecture/.

Google Scholar

[2] Information on https://www.jeccomposites.com/news/spotted-by-jec/the-flax-bridge-in-almere- a-true-innovation/

Google Scholar

[3] H. Katogi, K. Uematsu, Y. Shimamura, K. Tohgo, T. Fujii and K. Takemura: J. Jpn Soc. Compos. Mater. Vol. 41 (2015), p.47 (in Japanese)

Google Scholar

[4] H. Katogi, K. Uematsu, Y. Shimamura, K. Tohgo, T. Fujii and K. Takemura: J. Jpn Soc. Compos. Mater. Vol. 41 (2015) p.25 (in Japanese)

Google Scholar

[5] K. Goda, M.S. Sreekala, A. Gomes, T. Kaji and J. Ohgi: Compos. Part A Appl. Sci. Manuf. Vol. 37 (2006) p.2213

Google Scholar

[6] H. Katogi, Y. Shimamura, K. Tohgo and T. Fujii: Adv. Compos. Mater. Vol. 21 (2012), p.1

Google Scholar

[7] H. Katogi, Y. Shimamura, K. Tohgo, T. Fujii and K. Takemura: Adv. Compos. Mater. Vol. 27 (2018) p.235

Google Scholar

[8] K. Tanaka, T. Shiga and T. Katayama: J. Soc. Mater. Sci. Jpn. Vol. 67 (2018) p.291 (in Japanese)

Google Scholar

[9] O. Platnieks, S. Gaidukovs, A. Barkane, A. Sereda, G. Gaidukova, L. Grase, V. K. Thakur, I. Filipova, V. Fridrihsone, M. Skute and M. Laka: Polymers. Vol. 12 (2020) p.1472

DOI: 10.3390/polym12071472

Google Scholar

[10] X. Yang, W. Fan, S. Ge, X. Gao, S. Wang, Y. Zhang, S. Y. Foong, R.K. Liew, S. S. Lam and C. Xia: Industrial. Crops Prod. Vol. 162 (2021) p.113312

DOI: 10.1016/j.indcrop.2021.113312

Google Scholar

[11] R. Scaffaro, M. C. Citarrella, E. F. Gulino and M. Morreale: Mater. Vol. 15 (2022) p.465

Google Scholar

[12] D. Skaf, T. C. Gomes, R. N. Hussein, G. Nagesh, M. J. Ahamed, T. B. Carmichael and S. Rondeau-Gagné: ACS Applied Polym. Mater. Vol. 6 (2024) p.4025

DOI: 10.1021/acsapm.4c00092

Google Scholar

[13] R. Nakamura, K. Goda, J. Noda and A. Netravali: J. Solid Mech. Mater. Eng., Vol. 4 (2010) p.1605

Google Scholar

[14] K. Takemura, Y. Takada and H. Katogi: WIT Trans. Built Environ. Vol. 124 (2012) p.417

Google Scholar

[15] K. Matsumoto, K. Takemura, R. Kitamura, H. Katogi, T. Tanaka and H. Takagi: Compos. Part A Appl. Sci. Manuf. Vol. 176 (2024) p.107836

Google Scholar

[16] G. Yan, Z. Cao, D. Devine, M. Penning and N. M. Gately: Polymers. Vol. 13 (2021) p.3723

Google Scholar