Investigation of Mechanical and Microstructural Characteristics of Diffusion-Bonded CpAl/IN718 Interface

Article Preview

Abstract:

Diffusion bonded joint of Commercially Pure Aluminum (CpAl) with Inconel 718 (IN718) superalloy was investigated for its mechanical and microstructural characteristics. Diffusion Bonding (DB) of CpAl/IN718 was performed at 500 °C for 60 minutes using vacuum tube furnace in the presence Argon (Ar) gas under pressure at a heating rate of 10 °C/minutes followed by furnace cooled. The resultant joint interface was investigated by using Optical and Scanning Electron Microscopy (OM and SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), microhardness and shear strength. The microstructural analysis shows the formation of various Intermetallic Compounds (IMCs) at the bonding interface, such as NiAl3, FeAl2, FeAl3, Fe2Al5 along with austenitic matrix, which was confirmed by XRD. Additionally, the hardness of the bonding interface was 15% and 255 higher as compared to BM of IN718 and CpAl respectively. Lastly, an average lap shear strength of 61 MPa was achieved with a joint efficiency of 84%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1135)

Pages:

15-24

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Kaushik, D.K. Dwivedi, Effect of tool geometry in dissimilar Al-Steel Friction Stir Welding, J. Manuf. Process. 68 (2021) 198–208. https://doi.org/https://doi.org/.

DOI: 10.1016/j.jmapro.2020.08.007

Google Scholar

[2] J. Liu, Z. Hao, Y. Xie, X. Meng, Y. Huang, L. Wan, Interface stability and fracture mechanism of Al/Steel friction stir lap joints by novel designed tool, J. Mater. Process. Technol. 300 (2022) 117425. https://doi.org/.

DOI: 10.1016/j.jmatprotec.2021.117425

Google Scholar

[3] E. Schubert, M. Klassen, I. Zerner, C. Walz, G. Sepold, Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry, J. Mater. Process. Technol. 115 (2001) 2–8.

DOI: 10.1016/S0924-0136(01)00756-7

Google Scholar

[4] S. Khan, M. Junaid, T. Shehbaz, F.N. Khan, Influence of Cu interlayer on the interfacial strengthening of the diffusion-bonded SS-304L/IN718, Mater. Lett. 358 (2024) 135829. https://doi.org/.

DOI: 10.1016/j.matlet.2023.135829

Google Scholar

[5] K.P. Mehta, A review on friction-based joining of dissimilar aluminum-steel joints, J. Mater. Res. 34 (2019) 78–96.

DOI: 10.1557/jmr.2018.332

Google Scholar

[6] A. Gullino, P. Matteis, F. D'Aiuto, Review of Aluminum-To-Steel Welding Technologies for Car-Body Applications, Metals (Basel). 9 (2019).

DOI: 10.3390/met9030315

Google Scholar

[7] P.L. Florence, K.S. Narayanaswamy, P.H. V Sesha Talpa Sai, S. Devaraj, Impact of friction stir welding tool profile on the strength of dissimilar aluminium and stainless steel welded joints, Mater. Today Proc. 46 (2021) 583–585. https://doi.org/.

DOI: 10.1016/j.matpr.2020.11.290

Google Scholar

[8] M. Joints, Di ff usion Bonding and Transient Liquid Phase (TLP) Bonding of Type 304 and 316 Austenitic Stainless Steel—A Review of Similar and Dissimilar Material Joints, (2020).

DOI: 10.3390/met10050613

Google Scholar

[9] S. Meco, G. Pardal, S. Ganguly, S. Williams, N. McPherson, Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components, Opt. Lasers Eng. 67 (2015) 22–30.

DOI: 10.1016/j.optlaseng.2014.10.006

Google Scholar

[10] S. Khan, Z. Ali, K. Rehman, M. Junaid, Mechanical and Microstructural Characterization of Diffusion-Bonded Copper-Nickel Joint Interface, Adv. Mater. Res. 1179 (2024) 147–155.

DOI: 10.4028/p-k8wUUO

Google Scholar

[11] S. Sreekanth, K. Hurtig, S. Joshi, J. Andersson, Effect of process parameters and heat treatments on delta-phase precipitation in directed energy deposited alloy 718, Weld. World. 66 (2022) 863–877.

DOI: 10.1007/s40194-022-01253-0

Google Scholar

[12] B. Lathashankar, G.C. Tejaswini, R. Suresh, N.H.S. Swamy, Advancements in diffusion bonding of aluminium and its alloys: a comprehensive review of similar and dissimilar joints, Adv. Mater. Process. Technol. 00 (2022) 1–19. https://doi.org/.

DOI: 10.1080/2374068X.2022.2079274

Google Scholar

[13] C.N. Niu, W.L. Zhou, X.G. Song, S.P. Hu, J. Cao, M.X. Yang, W.M. Long, Surface modification of pure aluminum via Ar ion bombardment for Al/Al solid-state diffusion bonding, Mater. Charact. 187 (2022) 111886. https://doi.org/https://doi.org/.

DOI: 10.1016/j.matchar.2022.111886

Google Scholar

[14] M. Poliserpi, R. Buzolin, R. Boeri, C. Poletti, S. Sommadossi, Microstructure Evolution and Phase Identification in Ni-Based Superalloy Bonded by Transient Liquid Phase Bonding, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 52 (2021) 1695–1707.

DOI: 10.1007/s11663-021-02136-3

Google Scholar

[15] M. Poliserpi, P. Barriobero-Vila, G. Requena, L.N. García, A. Tolley, C. Poletti, T. Vojtek, A. Weiser, N. Schell, A. Stark, R. Boeri, S. Sommadossi, TEM and Synchrotron X-ray Study of the Evolution of Phases Formed During Bonding of IN718/Al/IN718 Couples by TLPB, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 52 (2021) 1382–1394.

DOI: 10.1007/s11661-021-06159-y

Google Scholar

[16] R.E. Purwanto, M. Hartono, Y.A. Widodo, Optimization of Spot Welding for Peel load on SPCC Steel Sheets, J. Energy, Mech. Mater. Manuf. Eng. 5 (2020) 53.

DOI: 10.22219/jemmme.v5i1.10492

Google Scholar

[17] B. Binesh, Diffusion brazing of IN718/AISI 316L dissimilar joint: Microstructure evolution and mechanical properties, J. Manuf. Process. 57 (2020) 196–208.

DOI: 10.1016/j.jmapro.2020.06.025

Google Scholar

[18] L. Renhof, C. Krempaszky, E. Werner, M. Stockinger, Analysis of microstructural properties of in 718 after high speed forging, Proc. Int. Symp. Superalloys Var. Deriv. (2005) 261–270.

DOI: 10.7449/2005/superalloys_2005_261_270

Google Scholar

[19] X. Li, A. Scherf, M. Heilmaier, F. Stein, The Al-Rich Part of the Fe-Al Phase Diagram, J. Phase Equilibria Diffus. 37 (2016) 162–173.

DOI: 10.1007/s11669-015-0446-7

Google Scholar

[20] Y. Zhang, T. Zhao, X. Yu, J. Huang, The Al-Fe Intermetallic Compounds and the Atomic Diffusion Behavior at the Interface of Aluminum-Steel Welded Joint, Metals (Basel). 13 (2023).

DOI: 10.3390/met13020334

Google Scholar

[21] T. Yasui, T. Wu-Bian, A. Hanai, T. Mori, K. Hirosawa, M. Fukumoto, Friction stir girth welding between aluminum and steel rods, Procedia Manuf. 15 (2018) 1376–1381.

DOI: 10.1016/j.promfg.2018.07.345

Google Scholar

[22] J.M. Guilemany, C.R.C. Lima, N. Cinca, J.R. Miguel, Studies of Fe-40Al coatings obtained by high velocity oxy-fuel, Surf. Coatings Technol. 201 (2006) 2072–2079.

DOI: 10.1016/j.surfcoat.2006.04.045

Google Scholar

[23] P. Geng, H. Ma, M. Wang, G. Qin, J. Zhou, C. Zhang, Y. Ma, N. Ma, H. Fujii, Dissimilar linear friction welding of Ni-based superalloys, Int. J. Mach. Tools Manuf. 191 (2023) 104062. https://doi.org/.

DOI: 10.1016/j.ijmachtools.2023.104062

Google Scholar

[24] C.S. Lee, H. Li, R.S. Chandel, Vacuum-free diffusion bonding of aluminium metal matrix composite, J. Mater. Process. Technol. 89–90 (1999) 326–330.

DOI: 10.1016/S0924-0136(99)00144-2

Google Scholar

[25] M. Karny, On the Areospace-Grade Adhesives Shear Strength Testing with ASTM D5656 Test as an Example, Trans. Aerosp. Res. 2019 (2019) 27–37.

DOI: 10.2478/tar-2019-0008

Google Scholar

[26] J. Zhang, G. Luo, Y. Wang, Y. Xiao, Q. Shen, L. Zhang, Effect of Al thin film and Ni foil interlayer on diffusion bonded Mg–Al dissimilar joints, J. Alloys Compd. 556 (2013) 139–142.

DOI: 10.1016/j.jallcom.2012.12.106

Google Scholar

[27] Y. Wang, G. Luo, J. Zhang, Q. Shen, L. Zhang, Effect of silver interlayer on microstructure and mechanical properties of diffusion-bonded Mg-Al joints, J. Alloys Compd. 541 (2012) 458–461.

DOI: 10.1016/j.jallcom.2012.06.120

Google Scholar