[1]
Rani, J., Kuruvilla, M. and Joseph, A., 2023. Computational modelling and theoretical calculations on hydroxy citric acid and mangostine and comparing the corrosion inhibition effect of aqueous and alcoholic extracts Garcinia cambogia leaves for mild steel in hydrochloric acid. Journal of Molecular Structure, 1274, p.134302. https://doi.org/10.1016/j.molstruc. 2022.134302
DOI: 10.1016/j.molstruc.2022.134302
Google Scholar
[2]
Kobzar, Y.L. and Fatyeyeva, K., 2021. Ionic liquids as green and sustainable steel corrosion inhibitors: Recent developments. Chemical Engineering Journal, 425, p.131480
DOI: 10.1016/j.cej.2021.131480
Google Scholar
[3]
Costa, S.N., Almeida-Neto, F.W., Campos, O.S., Fonseca, T.S., de Mattos, M.C., Freire, V.N., Homem-de-Mello, P., Marinho, E.S., Monteiro, N.K., Correia, A.N. and de Lima-Neto, P., 2021. Carbon steel corrosion inhibition in acid medium by imidazole-based molecules: Experimental and molecular modelling approaches. Journal of Molecular Liquids, 326, p.115330
DOI: 10.1016/j.molliq.2021.115330
Google Scholar
[4]
Cornejo Robles, E., Olivares-Xometl, O., Likhanova, N.V., Arellanes-Lozada, P., Lijanova, I.V. and Díaz-Jiménez, V., 2023. Synthesis of Ammonium-Based ILs with Different Lengths of Aliphatic Chains and Organic Halogen-Free Anions as Corrosion Inhibitors of API X52 Steel. International Journal of Molecular Sciences, 24(8), p.7613
DOI: 10.3390/ijms24087613
Google Scholar
[5]
Desai, P.D., Pawar, C.B., Avhad, M.S. and More, A.P., 2023. Corrosion inhibitors for carbon steel: A review. Vietnam Journal of Chemistry, 61(1), pp.15-42
DOI: 10.1002/vjch.202200111
Google Scholar
[6]
Rani, A.J., Thomas, A., Williams, L. and Joseph, A., 2022. Effect of lunamarine, the major constituent of boerhaavia diffusa leave extract on the corrosion inhibition of mild steel in hydrochloric acid; computational modelling, surface screening and electroanalytical studies. Journal of Bio-and Tribo-Corrosion, 8, pp.1-21
DOI: 10.1007/s40735-021-00616-2
Google Scholar
[7]
Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N.K., Benmessaoud, M., El Hajjaji, S. and Essassi, E.M., 2021. Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl) methyl] benzimidazole against carbon steel corrosion in 1 M HCl solution: Combining experimental and theoretical studies. Journal of Molecular Liquids, 321, p.114750
DOI: 10.1016/j.molliq.2020.114750
Google Scholar
[8]
Belghiti, M.E., Echihi, S., Dafali, A., Karzazi, Y., Bakasse, M., Elalaoui-Elabdallaoui, H., Olasunkanmi, L.O., Ebenso, E.E. and Tabyaoui, M., 2019. Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface. Applied surface science, 491, pp.707-722
DOI: 10.1016/j.apsusc.2019.04.125
Google Scholar
[9]
El-Hajjaji, F., Belghiti, M.E., Hammouti, B., Jodeh, S., Hamed, O., Lgaz, H. and Salghi, R., 2018. Adsorption and corrosion inhibition effect of 2-mercaptobenzimidazole (surfactant) on a carbon steel surface in an acidic medium: Experimental and monte carlo simulations. Portugaliae Electrochimica Acta, 36(3), pp.197-212
DOI: 10.4152/pea.201803197
Google Scholar
[10]
Umoren, S.A., Solomon, M.M., Obot, I.B. and Suleiman, R.K., 2018. Comparative studies on the corrosion inhibition efficacy of ethanolic extracts of date palm leaves and seeds on carbon steel corrosion in 15% HCl solution. Journal of adhesion science and Technology, 32(17), pp.1934-1951
DOI: 10.1080/01694243.2018.1455797
Google Scholar
[11]
Pakiet, M., Tedim, J., Kowalczyk, I. and Brycki, B., 2019. Functionalised novel gemini surfactants as corrosion inhibitors for mild steel in 50 mM NaCl: Experimental and theoretical insights. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, p.123699
DOI: 10.1016/j.colsurfa.2019.123699
Google Scholar
[12]
Hsissou, R., Benhiba, F., Dagdag, O., El Bouchti, M., Nouneh, K., Assouag, M., Briche, S., Zarrouk, A. and Elharfi, A., 2020. Development and potential performance of prepolymer in corrosion inhibition for carbon steel in 1.0 M HCl: Outlooks from experimental and computational investigations. Journal of colloid and interface science, 574, pp.43-60
DOI: 10.1016/j.jcis.2020.04.022
Google Scholar
[13]
Ojo Sunday, F., Popoola, A.P. and Tau, V., 2014. Electro-Oxidation Performance and Photo-Structural Characterization of Induced Natural Additive on Chloride Electrolyte Thin film Coated Steel. Journal of the Chemical Society of Pakistan, 36(4). Vol. 36, No. 4, 2014 568- 575.
Google Scholar
[14]
Rodríguez, J.A., Cruz-Borbolla, J., Arizpe-Carreón, P.A. and Gutiérrez, E., 2020. Mathematical models generated for the prediction of corrosion inhibition using different theoretical chemistry simulations. Materials, 13(24), p.5656
DOI: 10.3390/ma13245656
Google Scholar
[15]
Aslam, R., Mobin, M., Zehra, S. and Aslam, J., 2022. A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments. Journal of Molecular Liquids, 364, p.119992
DOI: 10.1016/j.molliq.2022.119992
Google Scholar
[16]
Obot, I.B., Kaya, S., Kaya, C. and Tüzün, B., 2016. Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches. Research on Chemical Intermediates, 42, pp.4963-4983
DOI: 10.1007/s11164-015-2339-0
Google Scholar
[17]
Kasprzhitskii, A. and Lazorenko, G., 2021. Corrosion inhibition properties of small peptides: DFT and Monte Carlo simulation studies. Journal of Molecular Liquids, 331, p.115782
DOI: 10.1016/j.molliq.2021.115782
Google Scholar
[18]
Gutiérrez, E., Rodríguez, J.A., Cruz-Borbolla, J., Alvarado-Rodríguez, J.G. and Thangarasu, P., 2016. Development of a predictive model for corrosion inhibition of carbon steel by imidazole and benzimidazole derivatives. Corrosion Science, 108, pp.23-35
DOI: 10.1016/j.corsci.2016.02.036
Google Scholar
[19]
Zhang, B., He, C., Wang, C., Sun, P., Li, F. and Lin, Y., 2015. Synergistic corrosion inhibition of environment-friendly inhibitors on the corrosion of carbon steel in soft water. Corrosion Science, 94, pp.6-20
DOI: 10.1016/j.corsci.2014.11.035
Google Scholar
[20]
Wang, X., Liu, S., Yan, J., Zhang, J., Zhang, Q. and Yan, Y., 2023. Recent Progress of Polymeric Corrosion Inhibitor: Structure and Application. Materials, 16(8), p.2954
DOI: 10.3390/ma16082954
Google Scholar
[21]
Fayomi, O.S.I. and Popoola, A.P.I., 2015. Chemical interaction, interfacial effect and the microstructural characterization of the induced zinc–aluminum–Solanum tuberosum in chloride solution on mild steel. Research on Chemical Intermediates, 41, pp.2393-2405
DOI: 10.1007/s11164-013-1354-2
Google Scholar
[22]
Guo, L., Tan, J., Kaya, S., Leng, S., Li, Q. and Zhang, F., 2020. Multidimensional insights into the corrosion inhibition of 3, 3-dithiodipropionic acid on Q235 steel in H2SO4 medium: a combined experimental and in silico investigation. Journal of colloid and interface science, 570, pp.116-124
DOI: 10.1016/j.jcis.2020.03.001
Google Scholar
[23]
Wang, H.L., Fan, H.B. and Zheng, J.S., 2003. Corrosion inhibition of mild steel in hydrochloric acid solution by a mercapto-triazole compound. Materials Chemistry and Physics, 77(3), pp.655-661
DOI: 10.1016/S0254-0584(02)00123-2
Google Scholar
[24]
Mobin, M., Parveen, M. and Aslam, R., 2022. Effect of different additives, temperature, and immersion time on the inhibition behavior of L-valine for mild steel corrosion in 5% HCl solution. Journal of Physics and Chemistry of Solids, 161, p.110422
DOI: 10.1016/j.jpcs.2021.110422
Google Scholar
[25]
Popova, A., Christov, M. and Vasilev, A., 2015. Mono-and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors. Part III: influence of the temperature on the inhibition process. Corrosion science, 94, pp.70-78
DOI: 10.1016/j.corsci.2015.01.039
Google Scholar
[26]
Saha, S.K., Murmu, M., Murmu, N.C. and Banerjee, P., 2016. Evaluating electronic structure of quinazolinone and pyrimidinone molecules for its corrosion inhibition effectiveness on target specific mild steel in the acidic medium: a combined DFT and MD simulation study. Journal of Molecular Liquids, 224, pp.629-638
DOI: 10.1016/j.molliq.2016.09.110
Google Scholar
[27]
Oguzie, E.E., Enenebeaku, C.K., Akalezi, C.O., Okoro, S.C., Ayuk, A.A. and Ejike, E.N., 2010. Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media. Journal of Colloid and interface Science, 349(1), pp.283-292
DOI: 10.1016/j.jcis.2010.05.027
Google Scholar
[28]
Omran, M.A., Fawzy, M., Mahmoud, A.E.D. and Abdullatef, O.A., 2022. Optimization of mild steel corrosion inhibition by water hyacinth and common reed extracts in acid media using factorial experimental design. Green Chemistry Letters and Reviews, 15(1), pp.216-232
DOI: 10.1080/17518253.2022.2032844
Google Scholar
[29]
Dehghani, A., Mostafatabar, A.H., Bahlakeh, G. and Ramezanzadeh, B., 2020. A detailed study on the synergistic corrosion inhibition impact of the Quercetin molecules and trivalent europium salt on mild steel; electrochemical/surface studies, DFT modeling, and MC/MD computer simulation. Journal of Molecular Liquids, 316, p.113914
DOI: 10.1016/j.molliq.2020.113914
Google Scholar
[30]
Costa, S.N., Almeida-Neto, F.W., Campos, O.S., Fonseca, T.S., de Mattos, M.C., Freire, V.N., Homem-de-Mello, P., Marinho, E.S., Monteiro, N.K., Correia, A.N. and de Lima-Neto, P., 2021. Carbon steel corrosion inhibition in acid medium by imidazole-based molecules: Experimental and molecular modelling approaches. Journal of Molecular Liquids, 326, p.115330
DOI: 10.1016/j.molliq.2021.115330
Google Scholar
[31]
Jiang, H., Wang, B., Liu, J., Zhou, J. and Liu, C., 2023. Corrosion inhibition of Q235 and X65 steels in CO2-saturated solution by 2-phenyl imidazoline. Arabian Journal of Chemistry, 16(6), p.104774
DOI: 10.1016/j.arabjc.2023.104774
Google Scholar
[32]
Yue, X., Wei, Q., Lu, Y., Duan, M., Wang, H. and Xie, J., 2022. The Synergistic Inhibition Effect between Imidazoline and 2-Mercaptoethanol on Carbon Steel Corrosion in CO2-saturated 3.5% NaCl solution. International Journal of Electrochemical Science, 17(5), p.220556
DOI: 10.20964/2022.05.55
Google Scholar
[33]
Marzorati, S., Verotta, L. and Trasatti, S.P., 2018. Green corrosion inhibitors from natural sources and biomass wastes. Molecules, 24 (1), p.48
DOI: 10.3390/molecules24010048
Google Scholar
[34]
Gómez-Sánchez, G., Olivares-Xometl, O., Arellanes-Lozada, P., Likhanova, N.V., Lijanova, I.V., Arriola-Morales, J., Díaz-Jiménez, V. and López-Rodríguez, J., 2023. Temperature Effect on the Corrosion Inhibition of Carbon Steel by Polymeric Ionic Liquids in Acid Medium. International Journal of Molecular Sciences, 24(7), p.6291
DOI: 10.3390/ijms24076291
Google Scholar
[35]
Ouakki, M., Galai, M., Rbaa, M., Abousalem, A.S., Lakhrissi, B., Rifi, E.H. and Cherkaoui, M., 2020. Investigation of imidazole derivatives as corrosion inhibitors for mild steel in sulfuric acidic environment: experimental and theoretical studies. Ionics, 26(10), pp.5251-5272
DOI: 10.1007/s11581-020-03643-0
Google Scholar
[36]
Rbaa, M., Benhiba, F., Dohare, P., Lakhrissi, L., Touir, R., Lakhrissi, B., Zarrouk, A. and Lakhrissi, Y., 2020. Synthesis of new epoxy glucose derivatives as a non-toxic corrosion inhibitors for carbon steel in molar HCl: experimental, DFT and MD simulation. Chemical Data Collections, 27, p.100394
DOI: 10.1016/j.cdc.2020.100394
Google Scholar
[37]
Muthukrishnan, P., Jeyaprabha, B. and Prakash, P., 2017. Adsorption and corrosion inhibiting behavior of Lannea coromandelica leaf extract on mild steel corrosion. Arabian Journal of Chemistry, 10, Volume 10, Supplement 2, May 2017, Pages S2343-S2354. pp.S2343-S2354
DOI: 10.1016/j.arabjc.2013.08.011
Google Scholar
[38]
Patel, N.S., Jauhariand, S., Mehta, G.N., Al-Deyab, S.S., Warad, I. and Hammouti, B.J.I.J.E.S., 2013. Mild steel corrosion inhibition by various plant extracts in 0.5 M sulphuric acid. International journal of electrochemical science, 8(2), pp.2635-2655
DOI: 10.1016/S1452-3981(23)14337-9
Google Scholar
[39]
Bashir, S., Thakur, A., Lgaz, H., Chung, I.M. and Kumar, A., 2020. Corrosion inhibition performance of acarbose on mild steel corrosion in acidic medium: an experimental and computational study. Arabian Journal for Science and Engineering, 45, pp.4773-4783
DOI: 10.1007/s13369-020-04514-6
Google Scholar
[40]
Akanji, O., Fatoba, O.S. and Akinlabi, E.T., 2019. Corrosion Inhibition of Martensitic Stainless Steel in Chloride Medium by Calcium Gluconate-Solanum Tuberosum Extract as Surfactant. Key Engineering Materials, 796, pp.103-111. https://doi.org/10.4028/ www.scientific.net/KEM.796.103
DOI: 10.4028/www.scientific.net/kem.796.103
Google Scholar
[41]
Kahraman, R., 2002. Inhibition of atmospheric corrosion of mild steel by sodium benzoate treatment. Journal of materials engineering and performance, 11, pp.46-50
DOI: 10.1007/s11665-002-0007-1
Google Scholar
[42]
Blustein, G., Romagnoli, R., Jaén, J.A., Di Sarli, A.R. and Del Amo, B., 2006. Zinc basic benzoate as eco-friendly steel corrosion inhibitor pigment for anticorrosive epoxy-coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290(1-3), pp.7-18
DOI: 10.1016/j.colsurfa.2006.04.043
Google Scholar
[43]
Mendonça, G.L., Costa, S.N., Freire, V.N., Casciano, P.N., Correia, A.N. and de Lima-Neto, P., 2017. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corrosion Science, 115, pp.41-55
DOI: 10.1016/j.corsci.2016.11.012
Google Scholar
[44]
Parveen, M., Mobin, M., Zehra, S. and Aslam, R., 2018. L-proline mixed with sodium benzoate as sustainable inhibitor for mild steel corrosion in 1M HCl: An experimental and theoretical approach. Scientific Reports, 8(1), p.7489
DOI: 10.1038/s41598-018-24143-2
Google Scholar
[45]
Dhal, K., Singh, S. and Talukdar, M., 2022. Elucidation of molecular interactions of aspartic acid with aqueous potassium sorbate and sodium benzoate: Volumetric, viscometric and FTIR spectroscopic investigation. Journal of Molecular Liquids, 352, p.118659
DOI: 10.1016/j.molliq.2022.118659
Google Scholar
[46]
Awad, M.I., Saad, A.F., Shaaban, M.R., Jahdaly, B.A. and Hazazi, O.A., 2017. New insight into the mechanism of the inhibition of corrosion of mild steel by some amino acids. International Journal of Electrochemical Science, 12(2), pp.1657-1669
DOI: 10.20964/2017.02.300
Google Scholar
[47]
Zheng, X., Gong, M. and Liu, C., 2017. Inhibitive effect of L-lysine on the corrosion of mild steel in acidic solutions. International Journal of Electrochemical Science, 12(6), pp.5553-5566
DOI: 10.20964/2017.06.33
Google Scholar
[48]
Abdel-Fatah, H.T., Kamel, M.M., Hassan, A.A., Rashwan, S.A., Abd El Wahaab, S.M. and El-Sehiety, H.E., 2017. Adsorption and inhibitive properties of Tryptophan on low alloy steel corrosion in acidic media. Arabian Journal of Chemistry, 10, pp.S1164-S1171
DOI: 10.1016/j.arabjc.2013.02.010
Google Scholar
[49]
Mobin, M., Parveen, M. and Rafiquee, M.Z.A., 2013. Inhibition of mild steel corrosion using l-histidine and synergistic surfactants additives. Journal of materials engineering and performance, 22, pp.548-556
DOI: 10.1007/s11665-012-0262-8
Google Scholar
[50]
Ahamad, I. and Quraishi, M.A., 2010. Mebendazole: new and efficient corrosion inhibitor for mild steel in acid medium. Corrosion science, 52(2), pp.651-656
DOI: 10.1016/j.corsci.2009.10.012
Google Scholar
[51]
Ahamad, I., Prasad, R. and Quraishi, M.A., 2010. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corrosion Science, 52(4), pp.1472-1481
DOI: 10.1016/j.corsci.2010.01.015
Google Scholar
[52]
Singh, A., Ansari, K.R., Chauhan, D.S., Quraishi, M.A., Lgaz, H. and Chung, I.M., 2020. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium. Journal of colloid and interface science, 560, pp.225-236
DOI: 10.1016/j.jcis.2019.10.040
Google Scholar
[53]
Oguzie, E.E., Onuoha, G.N. and Onuchukwu, A.I., 2005. Inhibitory mechanism of mild steel corrosion in 2 M sulphuric acid solution by methylene blue dye. Materials Chemistry and Physics, 89(2-3), pp.305-311
DOI: 10.1016/j.matchemphys.2004.09.004
Google Scholar
[54]
Kaya, S., Tüzün, B., Kaya, C. and Obot, I.B., 2016. Determination of corrosion inhibition effects of amino acids: quantum chemical and molecular dynamic simulation study. Journal of the Taiwan Institute of Chemical Engineers, 58, pp.528-535
DOI: 10.1016/j.jtice.2015.06.009
Google Scholar
[55]
Zhu, Y., Sun, Q., Wang, Y., Tang, J., Wang, Y. and Wang, H., 2021. Molecular dynamic simulation and experimental investigation on the synergistic mechanism and synergistic effect of oleic acid imidazoline and l-cysteine corrosion inhibitors. Corrosion Science, 185, p.109414
DOI: 10.1016/j.corsci.2021.109414
Google Scholar