Characteristics of Polyethersulfone Membranes Modified by Silika and Nanocellulose Extracted from Biomass as Additives

Article Preview

Abstract:

Polyethersulfone membranes were fabricated using non-solvent-induced phase separation (NIPS) with silica and nanocellulose additives extracted from rice husk ash and genjer (Limnocharis flava). N-methyl pyrrolidone served as the solvent. The study aimed to prepare membranes with diverse characteristics by incorporating various combinations of additives. Silica acted as a pore-forming agent, while nanocellulose enhanced membrane hydrophilicity. Characterization techniques included Fourier-transform infrared spectroscopy (FTIR) for functional group analysis, which revealed the presence of C-S, Si-O, and Si-O-Si vibrations in the membranes. Additionally, scanning electron microscopy (SEM) was employed to examine the surface and cross-sectional structure of the membranes. To assess membrane performance, a flux test was conducted. The membrane containing 2% nanocellulose and 1% silica exhibited the highest flux value of 21.37 L/m².h, corresponding to a permeability of 21.37 L/m².h.bar. Based on these results, the membrane with 2% nanocellulose and 1% silica is considered optimal due to its superior performance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1137)

Pages:

3-10

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Strzelewicz, M. Krasowska, G. Dudek, M. Ciesla, Design of Polymer Membrane Morphology with Prescribed Structure and Diffusion Properties, Chemical Physics 531, 2020, pp.1-7

DOI: 10.1016/j.chemphys.2019.110662

Google Scholar

[2] E. H. Alosaimi, I. H. Alhosaimi, H. M. A. Hasan, Q. Chen, S. Melhi, and A. A. Younes, Towards superior permeability and antifouling performance of sulfonated polyethersulfone ultrafiltration membranes modified with sulfopropyl methacrylate functionalized SBA-15, Chinese Journal of Chemical Engineering, 2023, 53, pp.89-100.

DOI: 10.1016/j.cjche.2021.09.019

Google Scholar

[3] J. Efendi, S. Aprilia, and F. M. Djuned, Preparation and Characterization of Fly Ash Additive-Modified Polyether-Based Membrane, Jurnal Rekayasa Kimia dan Lingkungan, 2023, 18, pp.93-99.

DOI: 10.23955/rkl.v18i2.26297

Google Scholar

[4] S. Acarer, I. Pir, M. Tufekci, T.Erkoc, V. Oztekin, S. G. Durak, M. S. Ozcoban, G. T. Demirkol, M. Alhammod, S. Cavus, and N. Tufekci, Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes, Heliyon, 2023, 9, e13086.

DOI: 10.1016/j.heliyon.2023.e13086

Google Scholar

[5] S. Aprilia, W. Fuji, A. Nasrul, and R. Khairul, R, Removal of COD and BOD from Animals Slaughterhouse Waswater Through Polyethersulfone/Cellulose Nano Crystals Membrane, Materials Today: Proceedings, 2022, S101-S10.

DOI: 10.1016/j.matpr.2022.02.045

Google Scholar

[6] S. Aprilia, C. M. Rosnelly, Zuhra, F. Fitriani, E.H. Akbar, M. Raqib, K. Rahmah, A. Amin, and R. A. Baity, Synthesis of Amorphous Silica from Rice Husk Ash Using the Sol–Gel Method: Effect of Alkaline and Alkaline Concentration, Materials Today: Proceedings, 2023, pp.225-229.

DOI: 10.1016/j.matpr.2023.02.403

Google Scholar

[7] U. Fathanah, M. Izarul, M. Riza, N. Arahman, M. R. Lubis, and M. Yusuf, The Improvement of Hydrophilic Property of Polyethersulfone Membrane with Chitosan as Additive, Jurnal Rekayasa Kimia Lingkungan, 2019, 15(1), pp.53-61.

DOI: 10.23955/rkl.v15i1.15916

Google Scholar

[8] J. Lin, W. Ye, K. Zhong, J. Shen, N. Jullok, A. Sotto, and B.V. Bruggen, Enhancement of Polyethersulfone (PES) Membrane Doped by Monodisperse Stober Silica for Water Treatment, Chemical Engineering and Processing, 2015, pp.194-205.

DOI: 10.1016/j.cep.2015.03.011

Google Scholar

[9] V. R. Pereira, A. M. Isloor, Bhat, K. Udaya, and A. F. Ismail, Preparation and Antifouling Properties of PVDF Ultrafiltration Membranes With polyaniline (PANI) Nanofibers and Hydrolysed PSMA (H-PSMA) As Additives, Desalination, 2014, p.220–227

DOI: 10.1016/j.desal.2014.08.002

Google Scholar

[10] S. Mulyati, F. Razi, and Zuhra, Characteristic of Polyethersulfone (PES) Asymmetric Membrane with Dimethyl Formamide and N-Methyl Pyrrolidone as Solvent, Biopropal Industri, 2017, 8(1), pp.55-62

Google Scholar

[11] H. Susanto and M. Ulbricht, Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, 2009, pp.125-135

DOI: 10.1016/j.memsci.2008.11.025

Google Scholar

[12] E. Rahmah, N. A. Sunia, and J. Suhartono, Membran Polyethersulfone (PES)/CNT-TiO2 untuk Penyisihan Humic Acid di Bendungan Jatiluhur, Diseminasi FT, 2022, p.1‐8

Google Scholar

[13] S. Muchtar, M. Y. Wahab, S. Mulyati, N. Arahman, and M. Riza, Superior fouling resistant PVDF membrane with enhanced filtration performance fabricated by combined blending and the self-polymerization approach of dopamine, Journal of Water Process Engineering, 2019, 28, pp.293-299.

DOI: 10.1016/j.jwpe.2019.02.012

Google Scholar

[14] U. Fathanah, and H. Meilina, Karakterisasi dan Kinerja Membran Polyethersulfone Termodifikasi Aditif Anorganik secara Blending Polimer, Jurnal Serambi Engineering, 2021, 6(4).

DOI: 10.32672/jse.v6i4.3515

Google Scholar

[15] D. Y. Koseoglu-Imer, The determination of performances of polysulfone (PS) ultrafiltration membranes fabricated at different evaporation temperatures for the pretreatment of textile wastewater, Desalination, 2013, 316, pp.110-119.

DOI: 10.1016/j.desal.2013.02.011

Google Scholar