Comprehensive Analysis of Heat-Treated Lithium Metal: Surface Characteristics and Evolution of the Solid Electrolyte Interphase

Article Preview

Abstract:

Lithium metal batteries (LMBs) are promising candidates for next-generation energy storage devices because of their high energy density. However, the formation of dendritic lithium during charge-discharge cycles poses significant safety risks. This study investigates the effects of thermal treatment on the surface morphology and Solid Electrolyte Interphase (SEI) formation of lithium metal anodes using Atomic Force Microscopy (AFM). Lithium metal samples were heat-treated at 100°C for 24 hours and then immersed in an electrolyte solution for different durations. AFM analysis revealed that thermal treatment increases the size and uniformity of nucleation sites. This results in a thicker and more stable native oxide layer. This enhanced layer promotes a more uniform and densely packed SEI, which remains stable over long-term immersion. The findings highlight the potential of thermal treatment to improve the performance and safety of lithium metal anodes by stabilizing the SEI and preventing dendritic growth. This advancement could significantly enhance the practical application of LMBs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1141)

Pages:

95-101

Citation:

Online since:

December 2024

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Wang, J. Yi and Y. Xia, Recent progress in aqueous lithium‐ion batteries, Adv. Energy Mater. 2 (2012) 830-840.

DOI: 10.1002/aenm.201200065

Google Scholar

[2] J.B. Goodenough and Y. Kim, Challenges for rechargeable batteries, J. Power Sources 196 (2011) 6688-6694.

DOI: 10.1016/j.jpowsour.2010.11.074

Google Scholar

[3] M. Armand and J. M. Tarascon, Building better batteries, Nature 451 (2008) 652-657.

DOI: 10.1038/451652a

Google Scholar

[4] P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11 (2012) 19-29.

DOI: 10.1038/nmat3191

Google Scholar

[5] X. Huang, X. Guo, H. Tang, J. Zhang, Q. Tang, H. Yang, L. Wang and X. Zhao, Effect of electrolyte concentration on performance of lithium-sulfur batteries, J. Power Sources 359 (2017) 208-214.

Google Scholar

[6] M.M. Thackeray, C. Wolverton and E. D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci. 5 (2012) 7854-7863.

DOI: 10.1039/c2ee21892e

Google Scholar

[7] D. Aurbach, E. Zinigrad, Y. Cohen and H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics 148 (2002) 405-416.

DOI: 10.1016/s0167-2738(02)00080-2

Google Scholar

[8] J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359-367.

DOI: 10.1038/35104644

Google Scholar

[9] N. Nitta, F. Wu, J. T. Lee and G. Yushin, Li-ion battery materials: present and future, Mater. Today 18 (2015) 252-264.

DOI: 10.1016/j.mattod.2014.10.040

Google Scholar

[10] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303-4417.

DOI: 10.1021/cr030203g

Google Scholar

[11] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci. 7 (2014) 513-537.

DOI: 10.1039/c3ee40795k

Google Scholar

[12] D. Lin, Y. Liu and Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol. 12 (2017) 194-206.

DOI: 10.1038/nnano.2017.16

Google Scholar

[13] M.D. Tikekar, S. Choudhury, Z. Tu and L. A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy 1 (2016) 16114.

DOI: 10.1038/nenergy.2016.114

Google Scholar

[14] Y. Li, W. Yang, X. Li, Z. Wu, J. Xie, Y. Deng, S. Zhang and J. Wang, Long-cycle and high-rate lithium-metal batteries enabled by a rigid and stretchable polymer-electrolyte interphase, Adv. Mater. 30 (2018) 1800389.

Google Scholar

[15] C. Monroe and J. Newman, Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions, J. Electrochem. Soc. 150 (2003) A1377-A1384.

DOI: 10.1149/1.1606686

Google Scholar

[16] X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang and Q. Zhang, A review of solid electrolyte interphases on lithium metal anode, Adv. Sci. 3 (2016) 1500213.

DOI: 10.1002/advs.201670011

Google Scholar

[17] C. Liu, F. Li, L.-P. Ma and H.-M. Cheng, Advanced materials for energy storage, Adv. Mater. 22 (2010) E28-E62.

Google Scholar

[18] J. B. Goodenough, Y. Kim, Challenges for rechargeable batteries, J. Power Sources 196 (2011) 6688-6694.

DOI: 10.1016/j.jpowsour.2010.11.074

Google Scholar

[19] A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh and Y.-K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives, Adv. Energy Mater. 6 (2016) 1501010.

DOI: 10.1002/aenm.201501010

Google Scholar