Synthesis of Iron-Doped Carbon Nanodots from Waste Expanded Polystyrene and its Application in Carbon Monoxide Gas Detection

Article Preview

Abstract:

Herein, a one-pot solvothermal method was employed to synthesize Fe-doped carbon nanodots using waste expanded polystyrene as the carbon source and ferric chloride hexahydrate for iron doping. Three synthesis parameters-reaction time, temperature, and dopant weight-were optimized using Response Surface Methodology (RSM) based on Box-Behnken design, with relative fluorescence (FL) intensity as the response. Model validation showed a percentage error of 0.66% between replication experiments and predicted maximum intensity, confirming the model's reliability to maximize FL intensity in synthesis. FTIR spectroscopy identified the presence of a medium peak at 538 cm-¹, associated with Fe-O stretching, indicating successful Fe doping, supported by EDX analysis. TEM analysis confirmed the nanosized properties of Fe-CDs, with an average particle size of 1.84 nm, and HR-TEM revealed an onion-like structure with a lattice spacing of 0.369 nm, and the presence of amorphous shells, suggesting structural heterogeneity. The synthesized doped and undoped CDs were employed in a drop-casting method to produce films that were used for carbon monoxide detection. Results displayed significant effects of operating temperature and gas concentration on the gas response of Fe-CDs and CDs films on resistance. The significant statistical difference in gas response between Fe-CDs and undoped CDs suggests that Fe doping enhances electron mobility, due to more pronounced changes in resistivity, yielding higher responses to carbon monoxide gas.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1143)

Pages:

17-23

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Geyer, J. R. Jambeck and K. L. Law. Sci. Adv. 3 (7), (2017).

Google Scholar

[2] D. K. A. Barnes, F. Galgani, R. C. Thompson and M. Barlaz. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364 (1526), 1985–1998, (2009).

Google Scholar

[3] M.P. Aji, A.L. Wati, A. Priyanto, J. Karunawan, B.W. Nuryadin, E. Wibowo, P. Marwoto and Sulhadi. Environ. Nanotechnol. Monit. Manag. 9, 136–140 (2018).

DOI: 10.1016/j.enmm.2018.01.003

Google Scholar

[4] A.N. Uttaravalli, S. Dinda, B.R. Gidla. Process Saf. Environ. Prot. 137, 140–148 (2020).

Google Scholar

[5] M.K. Houtchens Toxic Encephalopathies II: Leukoencephalopathies. In Clinical Neurotoxicology; Elsevier: (2009); p.88–96.

DOI: 10.1016/b978-032305260-3.50014-9

Google Scholar

[6] Information on https://www.osha.gov/chemicaldata/462

Google Scholar

[7] H. Park, D. J. Shin and J. Yu. J. Chem. Educ. 98 (3), 703–709, (2021).

Google Scholar

[8] Y. Huo, S. Xiu, L.-Y. Meng and B. Quan. Chem. Eng. J. 451, 138572, (2023).

Google Scholar

[9] X. Qin, X. Wang, H. Xiang, J. Xie, J. Li and Y. Zhou. J. Phys. Chem. C 114 (39), 16806–16812, (2010).

Google Scholar

[10] Z. Zhang, S. Song, Y. Ding, J. Yu, W. Wu, J. Li, X. Wang, Y. Guo and L. Gong. J. Colloid Interface Sci. 669, 816–824, (2024).

Google Scholar

[11] D. Saha and M.J. Kienbaum. Microporous Mesoporous Mater. 287, 29–55, (2019).

Google Scholar

[12] M.A. Sheikh, R.S. Chandok and A. Bashir. Carbon Letters. (2024).

Google Scholar

[13] L.W. McKeen Styrenic Plastics. In Effect of Temperature and Other Factors on Plastics and Elastomers (p.41–95). Elsevier, (2008).

DOI: 10.1016/b978-081551568-5.50004-9

Google Scholar

[14] Y. Dang, B. Li, X. Feng, J. Jia, K. Li and Y. Zhang. ChemPhotoChem 7 (2), (2023).

Google Scholar

[15] M. Yang, H. Li, X. Liu, L. Huang, B. Zhang, K. Liu, W. Xie, J. Cui, D. Li, L. Lu, H. Sun and B. Yang. J. Nanobiotechnol. 21(1), 431 (2023).

Google Scholar

[16] C.S. Stan, A. Coroabă, E.L. Ursu, M.S. Secula and B.C. Simionescu. Sci. Rep. 9(1), 18893 (2019).

Google Scholar

[17] N. Papaioannou, A. Marinovic, N. Yoshizawa, A.E. Goode, M. Fay, A. Khlobystov, M.-M. Titirici and A. Sapelkin. Sci. Rep. 8(1), 6559 (2018).

DOI: 10.1038/s41598-018-25012-8

Google Scholar

[18] R.C. Powles, N.A. Marks and D.W.M. Lau. Phys. Rev. B 79(7) (2009).

Google Scholar

[19] S. Ghosh, A.M. Chizhik, M.O. Dekaliuk, J. Enderlein, H. Schuhmann, M. Seibt and A.I. Chizhik. Nano Lett. 10(14), 5656–5661 (2014).

DOI: 10.1021/nl502372x

Google Scholar

[20] M. Ghorbanpour, A. Feizi. J. Water Environ. Nanotechnol. 4(1), 60–66 (2019).

Google Scholar

[21] J.-W. Luo, A. Franceschetti and A. Zunger. Nano Lett. 8(10), 3174–3181 (2008).

Google Scholar

[22] Swathilakshmi and S. Anandhan. Sensors Diagn. 1(5), 902–931 (2022).

Google Scholar

[23] H. Ding, X.-H. Li, X.-B. Chen, J.-S. Wei, X.-B. Li and H.-M. Xiong. J. Appl. Phys. 127(23) (2020).

Google Scholar

[24] E.M. Santos, W. Sheng, R. Esmatpour Salmani, S. Tahmasebi Nick, A. Ghanbarpour, H. Gholami, C. Vasileiou, J.H. Geiger and B. Borhan. J. Am. Chem. Soc. 143(37), 15091–15102 (2021).

DOI: 10.1021/jacs.1c05039

Google Scholar

[25] X. Zhang, Y. Liu, C.-H. Kuan, L. Tang, T.D. Krueger, S. Yeasmin, A. Ullah, C. Fang and L.-J. Cheng. J. Mater. Chem. C 11(34), 11476–11485 (2023).

DOI: 10.1039/d3tc02209a

Google Scholar

[26] J.K. Radhakrishnan, M. Kumara and Geetika. Sensors Int. 2(100059), 100059 (2021).

Google Scholar

[27] Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao, C. Tang and S. Zhu. Ceram. Int. 44(4), 4392–4399 (2018).

Google Scholar

[28] C. Özbek, S. Okur, Ö. Mermer, M. Kurt, S. Sayın and M. Yılmaz. Sensors Actuators B: Chem. 215, 464–470 (2015).

DOI: 10.1016/j.snb.2015.04.004

Google Scholar

[29] P. Kumar, Samiksha, Shalini and R. Gill. Asian J. Chem. 30(12), 2737–2742 (2018).

DOI: 10.14233/ajchem.2018.21574

Google Scholar