[1]
S. Chaibeddra and F. Kharchi, "Performance of Compressed Stabilized Earth Blocks in sulphated medium," J. Build. Eng., vol. 25, no. May, p.100814, 2019.
DOI: 10.1016/j.jobe.2019.100814
Google Scholar
[2]
H. Danso, "Experimental Investigation on the Properties of Compressed Earth Blocks Stabilised with a Liquid Chemical," Adv. Mater., vol. 6, no. 6, p.122, 2017.
DOI: 10.11648/j.am.20170606.13
Google Scholar
[3]
P. J. Walker, "Strength, durability and shrinkage characteristics of cement stabilised soil blocks," Cem. Concr. Compos., vol. 17, no. 4, p.301–310, 1995.
DOI: 10.1016/0958-9465(95)00019-9
Google Scholar
[4]
J. Davidovits, "Geoplymers and Geopolymeric Materials," J. Therm. Anal., vol. 58, no. 58, p.99–104, 1989.
Google Scholar
[5]
J. Davidovits, Geopolymer chemistry and applications. Institut Géopolymère 16 rue Galilée F-02100 Saint-Quentin, 2008.
Google Scholar
[6]
A. Marsh, A. Heath, P. Patureau, P. Evernden, and P. Walker, "Influence of clay minerals and associated minerals in alkali activation of soils," Constr. Build. Mater., vol. 229, p.116816, 2019.
DOI: 10.1016/j.conbuildmat.2019.116816
Google Scholar
[7]
J. Temuujin, A. van Riessen, and R. Williams, "Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes," J. Hazard. Mater., vol. 167, no. 1–3, p.82–88, 2009.
DOI: 10.1016/j.jhazmat.2008.12.121
Google Scholar
[8]
P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer, "Geopolymer technology: The current state of the art," J. Mater. Sci., vol. 42, no. 9, p.2917–2933, 2007.
DOI: 10.1007/s10853-006-0637-z
Google Scholar
[9]
J. C. Morel and A. Pkla, "A model to measure compressive strength of compressed earth blocks with the '3 points bending test,'" Constr. Build. Mater., vol. 16, no. 5, p.303–310, 2002.
DOI: 10.1016/S0950-0618(02)00023-5
Google Scholar
[10]
N. Billong, U. C. Melo, F. Louvet, and D. Njopwouo, "Properties of compressed lateritic soil stabilized with a burnt clay-lime binder: Effect of mixture components," Constr. Build. Mater., vol. 23, no. 6, p.2457–2460, 2009.
DOI: 10.1016/j.conbuildmat.2008.09.017
Google Scholar
[11]
S. S. Vivek and B. A. Mangai, "Materials Today : Proceedings Study on interlocking geo-polymer interlocking earth blocks made with residual rice husk ash and fly ash," Mater. Today Proc., no. xxxx, 2023.
DOI: 10.1016/j.matpr.2023.03.068
Google Scholar
[12]
P. P. Rachel and D. P. P. Dr.P.Partheeban, "Chemical Analysis of Low Calcium Fly Ash Based Geopolymer Concrete," Int. J. Sci. Res., vol. 2, no. 3, p.134–136, 2012.
DOI: 10.15373/22778179/mar2013/42
Google Scholar
[13]
K. M. Gopal and B. N. Kiran, "Investigation on Behaviour of Fly Ash Based Geopolymer Concrete in Acidic Environment," Int. J. Mod. Eng. Res., vol. 3, no. 1, p.580–586, 2013.
Google Scholar
[14]
S. Omar Sore, A. Messan, E. Prud'homme, G. Escadeillas, and F. Tsobnang, "Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso," Constr. Build. Mater., vol. 165, p.333–345, 2018, doi: 10.1016/j.conbuildmat. 2018.01.051.
DOI: 10.1016/j.conbuildmat.2018.01.051
Google Scholar
[15]
R. K. Preethi and B. V. Venkatarama Reddy, "Experimental investigations on geopolymer stabilised compressed earth products," Constr. Build. Mater., vol. 257, p.119563, 2020.
DOI: 10.1016/j.conbuildmat.2020.119563
Google Scholar
[16]
F. Belayali, W. Maherzi, M. Benzerzour, N. E. Abriak, and A. Senouci, "Compressed Earth Blocks Using Sediments and Alkali-Activated Byproducts," Sustain., vol. 14, no. 6, Mar. 2022.
DOI: 10.3390/su14063158
Google Scholar
[17]
R. A. Silva, E. Soares, D. V. Oliveira, T. Miranda, N. M. Cristelo, and D. Leitão, "Mechanical characterisation of dry-stack masonry made of CEBs stabilised with alkaline activation," Constr. Build. Mater., vol. 75, p.349–358, 2015.
DOI: 10.1016/j.conbuildmat.2014.11.038
Google Scholar
[18]
I. Dabakuyo, R. N. N. Mutuku, and R. O. Onchiri, "Mechanical Properties of Compressed Earth Block Stabilized with Sugarcane Molasses and Metakaolin-Based Geopolymer," Civ. Eng. J., vol. 8, no. 4, p.780–795, Apr. 2022.
DOI: 10.28991/CEJ-2022-08-04-012
Google Scholar
[19]
N. P. Vignesh, K. Mahendran, N. Arunachelam, and M. Ali, "Effects of Industrial and Agricultural Wastes on Mud Blocks Using Geopolymer," Adv. Civ. Eng., vol. 2020, 2020.
DOI: 10.1155/2020/1054176
Google Scholar
[20]
P. Kasinikota and D. D. Tripura, "Evaluation of compressed stabilized earth block properties using crushed brick waste," Constr. Build. Mater., vol. 280, p.122520, 2021.
DOI: 10.1016/j.conbuildmat.2021.122520
Google Scholar
[21]
S. Kolathayar, S. Sowmya, and E. Priyanka, "Comparative Study for Performance of Soil Bed Reinforced with Jute and Sisal Geocells as Alternatives to HDPE Geocells," Int. J. Geosynth. Gr. Eng., vol. 6, no. 4, p.1–8, 2020.
DOI: 10.1007/s40891-020-00238-7
Google Scholar
[22]
S. K. Anuj Kumar, "Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization," Constr. Build. Mater., vol. 38, p.865–871, 2013.
DOI: 10.1016/j.conbuildmat.2012.09.013
Google Scholar
[23]
A. Mesbah, J. C. Morel, P. Walker, and K. Ghavami, "Development of a Direct Tensile Test for Compacted Earth Blocks Reinforced with Natural Fibers," J. Mater. Civ. Eng., vol. 16, no. 1, p.95–98, 2004.
DOI: 10.1061/(asce)0899-1561(2004)16:1(95)
Google Scholar
[24]
A. Arulrajah, T.A. Kua, S. Horpibulsuk, C. Phetchuay, C. Suksiripattanapong, and Y. J. Du, "Strength and microstructure evaluation of recycled glass-fly ash geopolymer as low-carbon masonry units," Constr. Build. Mater., vol. 114, p.400–406, 2016.
DOI: 10.1016/j.conbuildmat.2016.03.123
Google Scholar
[25]
M.R. Sudhir, M. Beulah, P. Sasha Rai, and G. Gayathri, "A microstructure exploration and compressive strength determination of red mud bricks prepared using industrial wastes," Mater. Today Proc., vol. 46, no. xxxx, p.163–169, 2021.
DOI: 10.1016/j.matpr.2020.07.171
Google Scholar
[26]
J. A. Abdalla et al., "Case Studies in Construction Materials A comprehensive review on the use of natural fibers in cement / geopolymer concrete : A step towards sustainability," Case Stud. Constr. Mater., vol. 19, no. June, p. e02244, 2023.
DOI: 10.1016/j.cscm.2023.e02244
Google Scholar
[27]
V. Sujitha, B. Ramesh, and J. R. Xavier, "Effects of silane‑functionalized nanocomposites in superabsorbent polymer and its reinforcing effects in cementitious materials," no. 0123456789, 2023.
DOI: 10.1007/s00289-023-04888-1
Google Scholar
[28]
G. Araya-Letelier et al., "Experimental evaluation of adobe mixtures reinforced with jute fibers," Constr. Build. Mater., vol. 276, p.122127, 2021.
DOI: 10.1016/j.conbuildmat.2020.122127
Google Scholar
[29]
A. Guettala, H. Houari, B. Mezghiche, and R. Chebili, "Durability of lime stabilized earth blocks," Courr. du Savoir-N°02, p.61–66, 2002.
DOI: 10.1680/scc.31777.0064
Google Scholar
[30]
B. Han et al., "Smart concretes and structures: A review," J. Intell. Mater. Syst. Struct., vol. 26, no. 11, p.1303–1345, 2015.
DOI: 10.1177/1045389X15586452
Google Scholar
[31]
K. S. Al-Jabri, A. W. Hago, M. Baawain, and G. Sthapit, "Properties of soil-cement blocks manufactured using produced water from oil fields: A prelimnary investigation," Int. J. GEOMATE, vol. 13, no. 35, p.66–72, 2017.
DOI: 10.21660/2017.35.6671
Google Scholar
[32]
J. E. Oti, J. M. Kinuthia, and J. Bai, "Engineering properties of unfired clay masonry bricks," Eng. Geol., vol. 107, no. 3–4, p.130–139, 2009.
DOI: 10.1016/j.enggeo.2009.05.002
Google Scholar
[33]
E. R. Teixeira et al., "Mechanical and thermal performance characterisation of compressed earth blocks," Energies, vol. 13, no. 11, 2020.
DOI: 10.3390/en13112978
Google Scholar
[34]
P. Kandasamy, A & PriyaRachel, "An Experimental Evaluation of the Impact of Moulding Moisture Content on the Compressive Strength of Unstabilised Compressed Earth Blocks," E3S Web Conf., vol. 387, no. 04014, p.1–12, 2023, doi: https://doi.org/10.1051/e3sconf/ 202338704014.
DOI: 10.1051/e3sconf/202338704014
Google Scholar
[35]
F. McGregor, A. Heath, E. Fodde, and A. Shea, "Conditions affecting the moisture buffering measurement performed on compressed earth blocks," Build. Environ., vol. 75, p.11–18, 2014.
DOI: 10.1016/j.buildenv.2014.01.009
Google Scholar
[36]
M. S. Islam, T. E. Elahi, A. R. Shahriar, and N. Mumtaz, "Effectiveness of fly ash and cement for compressed stabilized earth block construction," Constr. Build. Mater., vol. 255, p.119392, 2020.
DOI: 10.1016/j.conbuildmat.2020.119392
Google Scholar
[37]
Z. Zhang, Y. C. Wong, A. Arulrajah, and S. Horpibulsuk, "A review of studies on bricks using alternative materials and approaches," Constr. Build. Mater., vol. 188, p.1101–1118, 2018.
DOI: 10.1016/j.conbuildmat.2018.08.152
Google Scholar
[38]
G. Santha Kumar, P. K. Saini, R. Deoliya, A. K. Mishra, and S. K. Negi, "Characterization of laterite soil and its use in construction applications: A review," Resour. Conserv. Recycl. Adv., vol. 16, no. November, p.200120, 2022.
DOI: 10.1016/j.rcradv.2022.200120
Google Scholar
[39]
K. Ghavami, R. D. Toledo Filho, and N. P. Barbosa, "Behaviour of composite soil reinforced with natural fibres," Cem. Concr. Compos., vol. 21, no. 1, p.39–48, 1999.
DOI: 10.1016/S0958-9465(98)00033-X
Google Scholar
[40]
F. Pacheco-Torgal and S. Jalali, "Earth construction: Lessons from the past for future eco-efficient construction," Constr. Build. Mater., vol. 29, p.512–519, 2012.
DOI: 10.1016/j.conbuildmat.2011.10.054
Google Scholar
[41]
S. Larbi, A. Khaldi, W. Maherzi, and N. E. Abriak, "Formulation of compressed earth blocks stabilized by glass waste activated with naoh solution," Sustain., vol. 14, no. 1, Jan. 2022.
DOI: 10.3390/su14010102
Google Scholar
[42]
J. Abimaje, Y. A. Dodo, A. Joshua, M. Zin Bin Kandar, and D. Y. Aminu, "A Review of Compressed Stabilized Earth Brick as a Sustainable Building Material in Nigeria Sustainable Architecture View project Attaining Points for Certification of Green Building Through Choice of Paint View project A Review of Compressed Stabilized E," 2017, [Online]. Available: https://www.researchgate.net/publication/343006179
Google Scholar
[43]
P. De Silva, K. Sagoe-Crenstil, and V. Sirivivatnanon, "Kinetics of geopolymerization: Role of Al2O3 and SiO2," Cem. Concr. Res., vol. 37, no. 4, p.512–518, 2007.
DOI: 10.1016/j.cemconres.2007.01.003
Google Scholar
[44]
S. Y. Janjua, P. K. Sarker, and W. K. Biswas, "Sustainability implications of service life on residential buildings – An application of life cycle sustainability assessment framework," Environ. Sustain. Indic., vol. 10, no. February, p.100109, 2021.
DOI: 10.1016/j.indic.2021.100109
Google Scholar
[45]
S. S. Aninda and M. S. Islam, "Effectiveness of waste concrete powder in fabricating compressed stabilized earth blocks: Strength, durability and thermal assessment," J. Build. Eng., vol. 80, no. October, p.107989, 2023.
DOI: 10.1016/j.jobe.2023.107989
Google Scholar
[46]
⇑ a Alexandra H. Meek a, Christopher T.S. Beckett a, b, Mohamed Elchalakani a, "Alternative stabilised rammed earth materials incorporating recycled waste and industrial by-products: Durability with and without water repellent," Constr. Build. Mater., vol. 265, p.120629, 2020.
DOI: 10.1016/j.conbuildmat.2020.120629
Google Scholar
[47]
L. Miccoli, U. Müller, and P. Fontana, "Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob," Constr. Build. Mater., vol. 61, p.327–339, 2014.
DOI: 10.1016/j.conbuildmat.2014.03.009
Google Scholar
[48]
M. Saidi, A. S. Cherif, B. Zeghmati, and E. Sediki, "Stabilization effects on the thermal conductivity and sorption behavior of earth bricks," Constr. Build. Mater., vol. 167, p.566–577, 2018.
DOI: 10.1016/j.conbuildmat.2018.02.063
Google Scholar
[49]
K. Al-Jabri, A. W. Hago, S. Al-Saadi, I. Al-Harthy, and P. Amoatey, "Physico-thermal, mechanical, and toxicity properties of stabilised interlocking compressed earth blocks made with produced water from oilfields," J. Build. Eng., vol. 42, no. July, p.103029, 2021.
DOI: 10.1016/j.jobe.2021.103029
Google Scholar
[50]
B. V. Venkatarama Reddy and K. S. Jagadish, "Embodied energy of common and alternative building materials and technologies," Energy Build., vol. 35, no. 2, p.129–137, 2003.
DOI: 10.1016/S0378-7788(01)00141-4
Google Scholar
[51]
R. Panagiotou, M. A. Kyriakides, R. Illampas, and I. Ioannou, "An experimental approach for the investigation of the performance of non-stabilize d Compresse d Earth Blocks ( CEBs ) against water-mediated weathering," J. Cult. Herit., vol. 57, p.184–193, 2022.
DOI: 10.1016/j.culher.2022.08.009
Google Scholar
[52]
A. H. Narayanaswamy, P. Walker, B. V. Venkatarama Reddy, A. Heath, and D. Maskell, "Mechanical and thermal properties, and comparative life-cycle impacts, of stabilised earth building products," Constr. Build. Mater., vol. 243, p.118096, 2020.
DOI: 10.1016/j.conbuildmat.2020.118096
Google Scholar
[53]
J. Dahmen, J. Kim, and C. M. Ouellet-Plamondon, "Life cycle assessment of emergent masonry blocks," J. Clean. Prod., vol. 171, p.1622–1637, 2018.
DOI: 10.1016/j.jclepro.2017.10.044
Google Scholar