[1]
H. K. Kim, J. H. Jeon, and H. K. Lee, "Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air," Constr. Build. Mater., vol. 29, p.193–200, 2012.
DOI: 10.1016/j.conbuildmat.2011.08.067
Google Scholar
[2]
P. Prabha, V. Marimuthu, M. Saravanan, G. S. Palani, N. Lakshmanan, and R. Senthil, "Effect of con fi nement on steel-concrete composite light-weight load-bearing wall panels under compression," JCSR, vol. 81, p.11–19, 2013.
DOI: 10.1016/j.jcsr.2012.10.008
Google Scholar
[3]
S. Cho, J. Kruger, A. Van Rooyen, and G. Van Zijl, "Rheology and application of buoyant foam concrete for digital fabrication," Compos. Part B, vol. 215, no. October 2020, p.108800, 2021.
DOI: 10.1016/j.compositesb.2021.108800
Google Scholar
[4]
C. Zhang et al., "Preparation and properties of foam ceramic from nickel slag and waste glass powder," Ceram. Int., vol. 46, no. 15, p.23623–23628, 2020.
DOI: 10.1016/j.ceramint.2020.06.134
Google Scholar
[5]
B. Chen and N. Liu, "A novel lightweight concrete-fabrication and its thermal and mechanical properties," Constr. Build. Mater., vol. 44, p.691–698, 2013.
DOI: 10.1016/j.conbuildmat.2013.03.091
Google Scholar
[6]
M. Łach, K. Korniejenko, and J. Mikuła, "Thermal Insulation and Thermally Resistant Materials Made of Geopolymer Foams," Procedia Eng., vol. 151, p.410–416, 2016.
DOI: 10.1016/j.proeng.2016.07.350
Google Scholar
[7]
A. Hajimohammadi, T. Ngo, and P. Mendis, "Enhancing the strength of pre-made foams for foam concrete applications," Cem. Concr. Compos., vol. 87, p.164–171, 2018.
DOI: 10.1016/j.cemconcomp.2017.12.014
Google Scholar
[8]
L. Chica and A. Alzate, "Cellular concrete review: New trends for application in construction," Mar. 10, 2019, Elsevier Ltd.
DOI: 10.1016/j.conbuildmat.2018.12.136
Google Scholar
[9]
A. Raj, D. Sathyan, and K. M. Mini, "Physical and functional characteristics of foam concrete: A review," Constr. Build. Mater., vol. 221, p.787–799, 2019.
DOI: 10.1016/j.conbuildmat.2019.06.052
Google Scholar
[10]
T. S. Tie, K. H. Mo, A. Putra, S. C. Loo, U. J. Alengaram, and T. C. Ling, "Sound absorption performance of modified concrete: A review," J. Build. Eng., vol. 30, no. January, p.101219, 2020.
DOI: 10.1016/j.jobe.2020.101219
Google Scholar
[11]
S. Kang, C. Siang, B. Li, T. Ling, U. Hossain, and C. Sun, "Utilizing high volumes quarry wastes in the production of lightweight foamed concrete," vol. 151, p.441–448, 2017.
DOI: 10.1016/j.conbuildmat.2017.06.091
Google Scholar
[12]
M. Kalpana and S. Mohith, "Study on autoclaved aerated concrete: Review," Mater. Today Proc., vol. 22, no. xxxx, p.894–896, 2020.
DOI: 10.1016/j.matpr.2019.11.099
Google Scholar
[13]
Y. H. M. Amran, A. A. A. Ali, R. S. M. Rashid, F. Hejazi, and N. A. Safiee, "Structural behavior of axially loaded precast foamed concrete sandwich panels," Constr. Build. Mater., vol. 107, p.307–320, 2016.
DOI: 10.1016/j.conbuildmat.2016.01.020
Google Scholar
[14]
D. Falliano, D. De Domenico, G. Ricciardi, and E. Gugliandolo, "3D-printable lightweight foamed concrete and comparison with classical foamed concrete in terms of fresh state properties and mechanical strength," Constr. Build. Mater., vol. 254, p.119271, 2020.
DOI: 10.1016/j.conbuildmat.2020.119271
Google Scholar
[15]
J. Shi et al., "A green ultra-lightweight chemically foamed concrete for building exterior: A feasibility study," J. Clean. Prod., vol. 288, no. xxxx, p.125085, 2021.
DOI: 10.1016/j.jclepro.2020.125085
Google Scholar
[16]
P. T. M. Naresh and B. G. Karisiddappa, "Properties of Aerated ( Foamed ) Concrete Blocks," vol. 4, no. 1, p.1–5, 2013.
Google Scholar
[17]
K. Jitchaiyaphum, T. Sinsiri, and P. Chindaprasirt, "Cellular Lightweight Concrete Containing Pozzolan Materials," Procedia Eng., vol. 14, p.1157–1164, 2011.
DOI: 10.1016/j.proeng.2011.07.145
Google Scholar
[18]
E. Namsone, G. Šahmenko, and A. Korjakins, "Durability Properties of High Performance Foamed Concrete," in Procedia Engineering, 2017.
DOI: 10.1016/j.proeng.2017.02.120
Google Scholar
[19]
C. Hwang and V. Tran, "A study of the properties of foamed lightweight aggregate for self-consolidating concrete," Constr. Build. Mater., vol. 87, p.78–85, 2015.
DOI: 10.1016/j.conbuildmat.2015.03.108
Google Scholar
[20]
K. Aarthi and K. Arunachalam, "Durability studies on fibre reinforced self compacting concrete with sustainable wastes," J. Clean. Prod., vol. 174, p.247–255, 2018.
DOI: 10.1016/j.jclepro.2017.10.270
Google Scholar
[21]
Y. Hu, W. Yang, P. Gao, J. Hao, X. Zhao, and H. Peng, "Relationship between properties and pore structure of foamed lightweight concrete," Nanjing Li Gong Daxue Xuebao/Journal Nanjing Univ. Sci. Technol., vol. 43, no. 3, p.363–366, 2019.
Google Scholar
[22]
V. Lesovik et al., "Improving the behaviors of foam concrete through the use of composite binder," J. Build. Eng., vol. 31, no. March, p.101414, 2020.
DOI: 10.1016/j.jobe.2020.101414
Google Scholar
[23]
M. R. Jones and A. McCarthy, "Heat of hydration in foamed concrete: Effect of mix constituents and plastic density," Cem. Concr. Res., vol. 36, no. 6, p.1032–1041, 2006.
DOI: 10.1016/j.cemconres.2006.01.011
Google Scholar
[24]
D. Yoo, J. Park, S. Kim, and Y. Yoon, "Early age setting , shrinkage and tensile characteristics of ultra high performance fiber reinforced concrete," Constr. Build. Mater., vol. 41, p.427–438, 2013.
DOI: 10.1016/j.conbuildmat.2012.12.015
Google Scholar
[25]
A. Richard, "Experimental Production of Sustainable Lightweight Foamed Concrete," Br. J. Appl. Sci. Technol., vol. 3, no. 4, p.994–1005, 2013.
DOI: 10.9734/bjast/2013/4242
Google Scholar
[26]
H. Guo, W. Guo, and Y. Shi, "Computational modeling of the mechanical response of lightweight foamed concrete over a wide range of temperatures and strain rates," Constr. Build. Mater., vol. 96, 2015.
DOI: 10.1016/j.conbuildmat.2015.08.064
Google Scholar
[27]
P. Krishna Kumar and K. Chinnaraju, "Comparative Experimental Investigation on Foam Concrete With Polypropylene Fiber and Carbon Fiber," Rev. Rom. Mater. Rom. J. Mater., vol. 52, no. 3, p.265–277, 2022.
Google Scholar
[28]
P. Prabha, G. S. Palani, N. Lakshmanan, and R. Senthil, "Behaviour of steel-foam concrete composite panel under in-plane lateral load," J. Constr. Steel Res., vol. 139, p.437–448, 2017.
DOI: 10.1016/j.jcsr.2017.10.002
Google Scholar
[29]
S. Hanehara, F. Tomosawa, M. Kobayakawa, and K. R. Hwang, "Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste," Cem. Concr. Res., vol. 31, no. 1, p.31–39, 2001.
DOI: 10.1016/S0008-8846(00)00441-5
Google Scholar
[30]
C. Fudge, F. Fouad, and R. Klingner, Autoclaved aerated concrete. Elsevier LTD, 2019.
DOI: 10.1016/B978-0-08-102616-8.00015-0
Google Scholar
[31]
E. K. K. Nambiar and K. Ramamurthy, "Air-void characterisation of foam concrete," Cem. Concr. Res., vol. 37, no. 2, p.221–230, 2007.
DOI: 10.1016/j.cemconres.2006.10.009
Google Scholar
[32]
A. A. Hilal, N. H. Thom, and A. R. Dawson, "On void structure and strength of foamed concrete made without/with additives," Constr. Build. Mater., vol. 85, p.157–164, 2015.
DOI: 10.1016/j.conbuildmat.2015.03.093
Google Scholar
[33]
J. Jiang, Z. Lu, Y. Niu, J. Li, and Y. Zhang, "Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement," vol. 92, p.949–959, 2016.
DOI: 10.1016/j.matdes.2015.12.068
Google Scholar
[34]
Z. Zhang, J. L. Provis, A. Reid, and H. Wang, "Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete," Cem. Concr. Compos., vol. 62, p.97–105, 2015.
DOI: 10.1016/j.cemconcomp.2015.03.013
Google Scholar
[35]
W. She, Y. Du, G. Zhao, P. Feng, Y. Zhang, and X. Cao, "Influence of coarse fly ash on the performance of foam concrete and its application in high-speed railway roadbeds," Constr. Build. Mater., vol. 170, p.153–166, 2018.
DOI: 10.1016/j.conbuildmat.2018.02.207
Google Scholar
[36]
Y. Xie, J. Li, Z. Lu, J. Jiang, and Y. Niu, "Effects of bentonite slurry on air-void structure and properties of foamed concrete," Constr. Build. Mater., vol. 179, 2018.
DOI: 10.1016/j.conbuildmat.2018.05.226
Google Scholar
[37]
C. Liu et al., "Water-resistance properties of high-belite sulphoaluminate cement-based ultra-light foamed concrete treated with different water repellents," Constr. Build. Mater., vol. 228, p.116798, 2019.
DOI: 10.1016/j.conbuildmat.2019.116798
Google Scholar
[38]
K. Ramamurthy, E. K. K. Nambiar, and G. I. S. Ranjani, "Cement & Concrete Composites A classification of studies on properties of foam concrete," Cem. Concr. Compos., vol. 31, no. 6, p.388–396, 2009.
DOI: 10.1016/j.cemconcomp.2009.04.006
Google Scholar
[39]
K. Miled and O. Limam, "Effective thermal conductivity of foam concretes: Homogenization schemes vs experimental data and FEM simulations," Mech. Res. Commun., vol. 76, p.96–100, 2016.
DOI: 10.1016/j.mechrescom.2016.07.004
Google Scholar
[40]
C. Krämer, M. Schauerte, T. L. Kowald, and R. H. F. Trettin, "Three-phase-foams for foam concrete application," Mater. Charact., vol. 102, 2015.
DOI: 10.1016/j.matchar.2015.03.004
Google Scholar
[41]
A. Chaipanich and P. Chindaprasirt, The properties and durability of autoclaved aerated concrete masonry blocks. Elsevier Ltd, 2015.
DOI: 10.1016/B978-1-78242-305-8.00009-7
Google Scholar
[42]
K. K. P and C. K, "Utilization Potentials of Nano Bio-Carbonate Filler to Mitigate Alkali Aggregate Reactivity of Glass Powder -Foamed Concrete," Can. J. Civ. Eng., 2022.
DOI: 10.1139/cjce-2022-0122
Google Scholar
[43]
S. M. Bida et al., "Advances in Precast Concrete Sandwich Panels toward Energy Efficient Structural Buildings," no. October, 2018.
DOI: 10.20944/preprints201810.0147.v1
Google Scholar
[44]
M. Al Khazaleh, P. K. Kumar, M. J. S. Mohamed, and A. Kandasamy, "Influence of coarse coal gangue aggregates on properties of structural concrete with nano silica," Mater. Today Proc., no. xxxx, 2022.
DOI: 10.1016/j.matpr.2022.08.188
Google Scholar
[45]
P. Krishna Kumar, A. Kandasamy, D. Bemisha Jeni, and J. Anand Solomon, "Study on Fresh and Hardened Properties of Nano-Concrete Under Different Curing Conditions," IOP Conf. Ser. Earth Environ. Sci., vol. 1086, no. 1, p.012053, 2022.
DOI: 10.1088/1755-1315/1086/1/012053
Google Scholar
[46]
V. Markin, M. Krause, J. Otto, and C. Schr, "3D-printing with foam concrete : From material design and testing to application and sustainability," vol. 43, no. June, 2021.
DOI: 10.1016/j.jobe.2021.102870
Google Scholar
[47]
Ravindra K. Dhir; Moray D. Newlands; Aikaterini McCarthy, "Contents and Preliminary Pages," in Use of Foamed Concrete in Construction, in Conference Proceedings. , Thomas Telford Publishing, 2005, pp. i–xii. doi:.
DOI: 10.1680/uofcic.34068
Google Scholar
[48]
K. K. Palaniappan, C. Komarasamy, and S. Murugan, "Utilization of Cuttlebone as Filler in Hydrophobic Foam Mortar: A Technical and Economical Feasibility Study," J. Mater. Civ. Eng., vol. 34, no. 8, p.1–14, 2022.
DOI: 10.1061/(asce)mt.1943-5533.0004335
Google Scholar
[49]
Y. H. Mugahed Amran et al., "Performance properties of structural fibred-foamed concrete," Results Eng., vol. 5, no. December 2019, p.100092, 2020.
DOI: 10.1016/j.rineng.2019.100092
Google Scholar
[50]
E. P. Kearsley and P. J. Wainwright, "The effect of porosity on the strength of foamed concrete," Cem. Concr. Res., vol. 32, no. 2, p.233–239, 2002.
DOI: 10.1016/S0008-8846(01)00665-2
Google Scholar