The Absorption and Dispersion of Visible and near IR Light in Glassy AsS3 - GeS4 Thin Films

Article Preview

Abstract:

The work is devoted to preparation and optical study of thin solid films of pseudo-binary AsS3 - GeS4 glasses, which are remarkable as topologically belonging to isostatic materials from intermediate phase (IP) region. The glasses from IP are stress free due to their structural self-organization, consequently have to be more stable and viable. To maintain the composition of the bulk source material, the films were grown via a very fast thermal vacuum evaporation of powder of relevant glasses onto optical quartz substrates. The optical properties of (GeS4)x(AsS3)1-x films (x = 0 ÷ 1) were studied by spectroscopic ellipsometry in the spectral range 0.35 ÷ 1.77 µm. It was pointed out that the films under investigation are entirely transparent in the visible and IR spectral region λ = 0.45 ÷ 1.77 µm. The refractive index follows the usual curves of a normal dispersion, reaching the maximal value around n = 3.0 at λ = 0.35 µm for AsS3 and the minimal one around n = 1.97 at λ = 1,77 µm for Ge17.2As3.5S79.3. The glass composition strongly influences the refractive index in the visible spectral range but this influence becomes must more moderate in the IR one. It was pointed out that independent on wavelength, both the extinction coefficient and refractive index nearly linearly falls with germanium concentration increase, with an exception related to ternary Ge17.2As3.5S79.3, in which the extinction coefficient shifts toward higher values but the refractive index toward lower values than those expected from aforementioned linearities. The Raman spectra analysis of the studied thin films allowed explanation of this feature in terms of inhomogeneity of the Ge17.2As3.5S79.3 films, caused by a great quantity of the nanoscale - separated stoichiometric As2S3 forming in Ge17.2As3.5S79.3 films during their growing.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1145)

Pages:

15-23

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics, Nature Photonics 5 (2011) 141-148

DOI: 10.1038/nphoton.2011.309

Google Scholar

[2] K. Tanaka, T. Nakagawa, A. Odajima, Photodarkening in glassy chalcogenide systems, Phil. Magazine B 54 (1986) L3-L7.

DOI: 10.1080/13642818608243170

Google Scholar

[3] G. Pfeifer, M.A. Paesler, S.C. Agarwal, Reversible photodarkening of amorphous calcogens, J. Non-Cryst. Solids 130 (1991)111-143.

DOI: 10.1016/0022-3093(91)90449-g

Google Scholar

[4] D. Tsiulyanu, I. Stratan, On the photodissolution kinetics of silver in glassy As2S3, J. Non-Cryst. Solids 356 (2010)147-152

DOI: 10.1016/j.jnoncrysol.2009.10.003

Google Scholar

[5] S. Chakravarty, B.S. Almutairi, R. Chbeir, S. Chakraborty, M. Bauchy, M. Micoulaut, P. Boolchand, Progress, Challenges, and Rewards in Probing Melt Dynamics, Configurational Entropy Change, and Topological Phases of Group V- and Group IV-Based Multicomponent Sulfide Glasses, Phys. Status Solidi B 257 (2020) 2000116 (2-17).

DOI: 10.1002/pssb.202000116

Google Scholar

[6] J.M. Harbold, F.Ö. Ilday, F.W. Wise, B.G. Aitken, Highly Nonlinear Ge–As–Se and Ge–As–S–Se Glasses for All-Optical Switching, IEEE Photonics Technology Letters 14 (2002) 822-824.

DOI: 10.1109/lpt.2002.1003105

Google Scholar

[7] P. Boolchand, D.G. Georgiev, B. Goodman, Discovery of the intermediate phase in chalcogenide glasses, Journ. Optoelectronics and Advanced Materials, 3 (2001)703 – 720.

Google Scholar

[8] F. Wang, S. Mamedov, P. Boolchand, B. Goodman, M. Chandrasekhar, Pressure Raman effects and internal stress in network glasses, Phys. Rev. B 71 (2005) 174201(1-8).

DOI: 10.1103/PhysRevB.71.174201

Google Scholar

[9] S. Chakravarty, D.G. Georgiev, P. Boolchand, M. Micoulaut, Ageing, fragility and the reversibility window in bulk alloy glasses, J. Phys.: Condens. Matter. 17 (2005) L1–L7

DOI: 10.1088/0953-8984/17/1/L01

Google Scholar

[10] M. Ciobanu, A.C. Galca, F. Sava, M.Y. Zaki, A. Velea, D. Tsiulyanu, First sharp diffraction peak features of the intermediate phase glasses and amorphous thin films in the non-stoichiometric (GeS4)x(AsS3)1-x system, Thin Solid Films 773 (2023) 139828 (1-8)

DOI: 10.1016/j.tsf.2023.139828

Google Scholar

[11] D. Tsiulyanu, S. A. Kozyukhin, M. Ciobanu, Middle range order and elastic properties of non-stoichiometric chalcogenide glasses in the AsS3 - GeS4 system, J. Non-Cryst. Solids 575 (2022) 121207 (1-7)

DOI: 10.1016/j.jnoncrysol.2021.121207

Google Scholar

[12] D. Tsiulyanu, I. Stratan, M. Ciobanu, Influence of glassy backbone on the photoformation and properties of solid electrolytes Ag : As-S-Ge, Chalcogenide Letters 17, (2020) 9 – 14

DOI: 10.1016/j.jnoncrysol.2023.122255

Google Scholar

[13] J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, L. Beneš, Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry, J. Applied Physics 104 (2008) 043523 (1-10)

DOI: 10.1063/1.2970069

Google Scholar

[14] A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, Xunming Deng, Gautam Ganguly, Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics, J. Appl. Phys. 92 (2002) 2424–2436

DOI: 10.1063/1.1497462

Google Scholar

[15] S. Juneja, S. Sudhakara, A. K. Srivastava, S. Kumar, Morphology and micro - structural studies of distinct silicon thin films deposited using very high frequency plasma enhanced chemical vapor deposition process, Thin Solid Films 619 (2016) 273-280. https://doi.org/10.1016/j.tsf.2016.10.051Get rights and content

DOI: 10.1016/j.tsf.2016.10.051

Google Scholar

[16] M. Becucci, R. Bini, and E. Castellucci, B. Eckert and H. J. Jodl, Mode Assignment of Sulfur r-S8 by Polarized Raman and FTIR Studies at Low Temperatures, J. Phys. Chem. B 101 (1997) 2132-2137

DOI: 10.1021/jp963029r

Google Scholar

[17] T. Wagner, S.O. Kasap, M. Vlcek, A. Sklen, A. Stronski, Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of Asx S100 -x glasses, Journal of material science 33 (1998) 5581 – 5588.

DOI: 10.1023/a:1004455929749

Google Scholar

[18] P. Chen, C. Holbrook, P. Boolchand, D. G. Georgiev, K. A. Jackson, M. Micoulaut, Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary AsxS1−x system, Phys. Rev .B,78 (2008) 224208.

DOI: 10.1103/physrevb.78.224208

Google Scholar

[19] D. Tsiulyanu, M. Veres, R. Holomb, M. Ciobanu, Raman scattering evidence on the correlation of middle range order and structural self-organization of As-S-Ge glasses in the intermediate phase region, J. Non-Cryst.Solids609(2023)122255 (1-10)

DOI: 10.1016/j.jnoncrysol.2023.122255

Google Scholar

[20] K. Jackson, A. Briley, S. Grossman, D. V. Porezag, M. R. Pederson, Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study, Phys. Rev. B 60 (1999) R14985- R14989.

DOI: 10.1103/PhysRevB.60.R14985

Google Scholar

[21] Y. Sakaguchi, T. Hanashima, K. Ohara, Al-Amin A. Simon, and M. Mitkova, Structural transformation in GexS100 − x (10 ≤ x ≤ 40) network glasses: Structural varieties in short-range, medium-range, and nanoscopic scale, Phys. Rev. Materials 3, (2019) 035601.

DOI: 10.1103/PhysRevMaterials.3.035601

Google Scholar

[22] K.Tanaka, M.Yamaguchi, Raman scattering in GeS2, Journal of Non-Crystalline Solids, 227-230 (1998) 757–760.

DOI: 10.1016/s0022-3093(98)00184-7

Google Scholar

[23] A. Stronski, T. Kavetskyy, I. Revutska, K. Shportko M. Popovych, I. Kaban, P Jovari, Structural order in (As2S3)x(GeS2)1- x glasses, J. Non-Cryst. Solids 572 (2021) 121075

DOI: 10.1016/j.jnoncrysol.2021.121075

Google Scholar

[24] R. Holomb, O. Kondrat, V. Mitsa, A. Mitsa, D. Gevczy, D. Olashyn, L.Himics, I. Rigó, A. J. Sadeq, M. H. Mahmood, T. Váczi, A. Czitrovszky, A. Csík, V. Takáts, M. Veres, Gold nanoparticle assisted synthesis and characterization of As–S crystallites: Scanning electron microscopy, X-ray diffraction, energydispersive X-ray and Raman spectroscopy combined with DFT calculations, J. Alloys and Compounds 894 (2022) 162467 (1-9)

DOI: 10.1016/j.jallcom.2021.162467

Google Scholar

[25] A.V. Stronski, M. Vlcek, A.I. Stetsun, A. Sklenar, P.E. Shepeliavyi, Raman spectra of Ag- and Cu-photo-doped As40S60-xSex films, J. Non-Cryst. Solids. 270 (2000) 129–136

DOI: 10.1016/S0022-3093(00)00002-8

Google Scholar

[26] D. G. Georgiev, P. Boolchand, K. A. Jackson, Intrinsic nanoscale phase separation of bulk As2S3 glass, Phil. Mag., 83 (2003) 2941–2953.

DOI: 10.1080/1478643031000151196

Google Scholar