Temperature Sensing in Cold Forging with Thermochromically Enhanced Lubrication Systems

Article Preview

Abstract:

Cold forming is characterized by high dimensional and shape accuracy as well as energy and cost efficiency in the series production of highly stressed components. Cold forming is characterized by high tribological loads. Complex lubrication systems are necessary to ensure fault-free production despite the high tribological loads. In the course of increasing demands on environmental compatibility, the disadvantageous zinc-phosphate-based lubricant systems have been replaced by more environmentally friendly single-layer lubricant systems. However, their functionality is strongly dependent on temperature, so that exact knowledge of the prevailing temperatures in the forming zone is necessary for optimum design of the lubricants [1]. Due to the high tribological stress, established measuring methods based on thermocouples can only approach the forming zone up to 10 mm. Previous works of the authors have shown that sensory lubricants based on thermochromic indicators are in principle capable of measuring temperatures directly in the forming zone [2,3]. Their functionality is based on the irreversible color change as a function of temperature [4]. The aim of this study is to develop a standardized test methodology for calibrating the sensory lubricants, which enables an exact correlation between temperature and color value. In addition, suitable indicators are to be identified and their influence on the tribological system analyzed. The test methodology developed uses inductive heating to heat the samples coated with the sensory lubricant to as high as 500 °C within 1 s. The temperature of the surface is determined by the temperature of the lubricant. By determining the surface temperatures reached as well as the color values under diffuse illumination in an integrating sphere, defined temperature ranges can be assigned to the color values of the indicators. With three indicators, which were identified as suitable, it was possible to detect temperatures in the contact zone of a full forward extrusion process and in the contact zone of the sliding compression test that reflect the simulated temperatures. In addition, the sliding compression test showed that the indicators have no influence on the tribological system up to an indicator concentration of 4 %.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1147)

Pages:

117-124

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Groche, S. Zang, C. Müller, D. Bodenmüller, A study on the performance of environmentally benign lubricants at elevated temperatures in bulk metal forming, Journal of Manufacturing Processes 20 (2) (2015) 425–430.

DOI: 10.1016/j.jmapro.2014.06.004

Google Scholar

[2] J. Schoppe, S. Zang, Schmierstoffsysteme als Möglichkeit zur Prozessüberwachung in der Kaltmassivumformung [Lubricant systems as an option for process monitoring in cold forging], 12. Umformtechnisches Kolloquium Darmstadt, (2015) 5-14.

Google Scholar

[3] P. Groche, P. Volke, C. Gerlitzky, J. Ostrowski, Adaption von Kaltmassivumformprozessen auf Basis einer Temperaturerfassung [Adaptation of cold forging processes on the basis of temperature recording], Neuere Entwicklungen in der Massivumformung (2017) 227-236.

Google Scholar

[4] A. Seeboth, D. Lötzsch, Thermochromic and thermotropic materials, Pan Stanford Publishing, Singapore, 2014.

Google Scholar

[5] Deutsche Massivumformung, Kaltmassivumformung: Präzision in Serie [Cold forming: precision in series production], Info-Reihe Massivumformung (2012).

Google Scholar

[6] J. Noneder, M. Merklein, U. Engel, E. Egerer, J. Frank, M. Frank, R. Ritzenhoff, V. Diehl , Hochleistungsbauteile durch Kaltmassivumformung hochfester, druckaufgestickter Stähle. [High-performance components through cold forging of high-strength, pressure-formed steels.] UTF-Science, III, (2012).

Google Scholar

[7] N. Bay, A. Azushima, P. Groche, I. Ishibashi, M. Merklein, M. Morishita, T. Nakamura, S. Schmid, M. Yoshida, Environmentally benign tribo-systems for metal forming, CIRP Annals 59 (2) (2010) 760–780.

DOI: 10.1016/j.cirp.2010.05.007

Google Scholar

[8] P. Groche, C. Müller, J. Stahlmann, S. Zang, Mechanical conditions in bulk metal forming tribometers—Part one, Tribology International 62 (2270) (2013) 223–231.

DOI: 10.1016/j.triboint.2012.12.008

Google Scholar

[9] F. Singer, Patent Nr. 673405, (1934)

Google Scholar

[10] M. Ludwig, Umweltfreundliche Kaltmassivumformung mithilfe eines modularen Anlagenkonzepts [Environmentally friendly cold forming using a modular system concept], massivUMFORMUNG (2020) 37–39.

Google Scholar

[11] H. Ludwig, S. Zang, O. Oehler, J. Holz, J. Ostowski, Umweltfreundliche Prozessketten in der Kaltmassivumformung von Abschnitten durch den Verzicht auf nasschemisch aufgebrachte Konversionsschichten [Environmentally friendly process chains in the cold forming of sections by dispensing with wet-chemically applied conversion layers] (2011).

Google Scholar

[12] P. Groche, S. Zang, Zinkphosphatfreie Kaltmassivumformung von Abschnitten [Zinc phosphate-free cold forging of sections], massivUMFORMUNG (2016) 50–54.

Google Scholar

[13] P. Groche, S. Zang, P. Kramer, C. Müller, V. Rezanov, Influence of a heat treatment prior to cold forging operations on the performance of lubricants, Tribology International 92 (2) (2015) 67–71.

DOI: 10.1016/j.triboint.2015.05.028

Google Scholar

[14] P. Groche, S. Zang, C. Müller, D. Bodenmüller, A study on the performance of environmentally benign lubricants at elevated temperatures in bulk metal forming, Journal of Manufacturing Processes 20 (2) (2015) 425–430.

DOI: 10.1016/j.jmapro.2014.06.004

Google Scholar

[15] S. Narayanan, Surface Pretreatment by phosphate conversion coatings, Rev. Adv. Mater. Sci. 9 (2005) 130-177.

Google Scholar

[16] H. Czichos, K.-H. Habig, Tribologie-Handbuch, 4th ed., Springer Fachmedien Wiesbaden, Wiesbaden, 2015.

Google Scholar

[17] G. Nitzsche, Reduzierung des Adhäsionsverschleißes beim Umformen von Aluminiumblechen [Reduction of adhesive wear when forming aluminium sheets], Dissertation, Shaker Verlag, Aachen (2007).

Google Scholar

[18] C. Müller, J. Filzek, P. Groche, O. Oehler, P. Scherzinger, M. Twickler, Temperaturentstehung und die tribologischen Folgen bei Produktionsbeginn der Kaltmassivumformung [Temperature development and the tribological consequences at the start of cold forging production], SchmiedeJOURNAL (2014) 28–32.

Google Scholar

[19] N. Bay, Green Lubricants for Metal Forming, Tribology of Manufacturing Processes (2010).

Google Scholar

[20] S. Zang, Bestimmung von Temperaturen und deren Einflüsse auf tribologische Systeme der Kaltmassivumformung [Determination of temperatures and their influence on tribological systems in cold forging], Dissertation, Shaker Verlag, Aachen (2016).

Google Scholar