[1]
Angst, U. M., "Challenges and opportunities in corrosion of steel in concrete." Materials and Structures, vol. 51, no.4. Jan. 2018.
Google Scholar
[2]
W. Zhao et al., "Research Progress of Organic Corrosion Inhibitors in Metal Corrosion Protection," Crystals, vol. 13, no. 9, Art. no. 9, Sep. 2023.
Google Scholar
[3]
C. Verma, E. E. Ebenso, M. A. Quraishi, and C. M. Hussain, "Recent developments in sustainable corrosion inhibitors: design, performance and industrial scale applications," Mater. Adv., vol. 2, no. 12, p.3806–3850, Jun. 2021.
DOI: 10.1039/d0ma00681e
Google Scholar
[4]
M.P. Gutte, S. R. Gaur, and S. B. Hiwale, "Synthesis Of Silver Nanoparticles By Biological and Chemical Methods," vol. 8, no. 12, 2021.
Google Scholar
[5]
N. Padole, N. Majgavali, M. Meshram, and N. Padole, "Synthesis And Characterization Of Silver Nanoparticles By Chemical Route For Potential Applications: A Review," vol. 31, p.2022, Apr. 2022.
Google Scholar
[6]
M. Fahim, A. Shahzaib, N. Nishat, A. Jahan, T. A. Bhat, and A. Inam, "Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications," JCIS Open, vol. 16, p.100125, Dec. 2024.
DOI: 10.1016/j.jciso.2024.100125
Google Scholar
[7]
R. S. Prakasham, S. K. Buddana, S. K. Yannam, and G. S. Guntuku, "Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus," vol. 22, no. 5, p.614–621, May 2012.
DOI: 10.4014/jmb.1107.07013
Google Scholar
[8]
Z. Haris and I. Ahmad, "Green synthesis of silver nanoparticles using Moringa oleifera and its efficacy against gram-negative bacteria targeting quorum sensing and biofilms," J.Umm Al-Qura Univ. Appll. Sci., vol. 10, no. 1, p.156–167, Mar. 2024.
DOI: 10.1007/s43994-023-00089-8
Google Scholar
[9]
Klangmanee, K., & Athipornchai, A. (n.d.). An instrument-free classification of phenolic compounds using ferric chloride reagent to improve organic chemistry teaching and learning. Tci-thaijo.org. Retrieved March 27, 2025, from https://ph02.tci-thaijo.org/index.php/scihcu/article/download/243719/165309
Google Scholar
[10]
Kancherla, N., Dhakshinamoothi, A., Chitra, K., & Komaram, R. B. (2019). Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (in vitro). Maedica, 14(4), 350–356
DOI: 10.26574/maedica.2019.14.4.350
Google Scholar
[11]
Lestari, M. S., Himawan, T., Abadi, A., & Retnowati, R. (2015). Toxicity and phytochemistry test of methanol extract of several plants from papua using Brine Shrimp Lethality Test (BSLT). https://www.jocpr.com/articles/toxicity-and-phytochemistry-test-of-methanol-extract-of-several-plants-from-papua-using-brine-shrimp-lethality-test-bslt.pdf
DOI: 10.33084/jsm.v11i2.10527
Google Scholar
[12]
Pérez, M., Dominguez-López, I., & Lamuela-Raventós, R. M. (2023). The chemistry behind the Folin-Ciocalteu method for the estimation of (poly)phenol content in food: Total phenolic intake in a Mediterranean dietary pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543–17553
DOI: 10.1021/acs.jafc.3c04022
Google Scholar
[13]
Velásquez, P., Giordano, A., Valenzuela, L. M., & Montenegro, G. (2022). Combined antioxidant capacity of Chilean bee hive products using mixture design methodology. Lebensmittel-Wissenschaft Und Technologie [Food Science and Technology], 155(112982), 112982
DOI: 10.1016/j.lwt.2021.112982
Google Scholar
[14]
Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes (Basel, Switzerland), 11(8), 2248. July 2023.
DOI: 10.3390/pr11082248
Google Scholar
[15]
Asif, Muhammad et al. "Green Synthesis of Silver Nanoparticles (AgNPs), Structural Characterization, and their Antibacterial Potential." Dose-Response, vol. 20, no. 2. Apr. 2022.
DOI: 10.1177/15593258221088709
Google Scholar
[16]
Cui, Yanyu, Qin, Yongxiang, Dilimulati, Dilinuer, Wang, Yujun, The Effect of Chlorine Ion on Metal Corrosion Behavior under the Scratch Defect of Coating, International Journal of Corrosion, 2019, 7982893, 11 pages, 2019
DOI: 10.1155/2019/7982893
Google Scholar
[17]
Živica, V. (2002). Significance and influence of the ambient temperature as a rate factor of steel reinforcement corrosion. Bulletin of Materials Science (India), 25(5), 375–379
DOI: 10.1007/bf02708013
Google Scholar
[18]
E. T. Ayoade, O. A. Akinyemi, and F. S. Oyelere, "Phytochemical profile of different morphological organs of Moringa oleifera plant," J Phytopharmacol, vol. 8, no. 6, p.295–298, Dec. 2019.
DOI: 10.31254/phyto.2019.8605
Google Scholar
[19]
J. Senguttuvan, S. Paulsamy, and K. Karthika, "Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities," Asian Pacific Journal of Tropical Biomedicine, vol. 4, no. Suppl 1, p. S359, May 2014.
DOI: 10.12980/apjtb.4.2014c1030
Google Scholar
[20]
Z. Nizioł-Łukaszewska, D. Furman-Toczek, T. Bujak, T. Wasilewski, and Z. Hordyjewicz-Baran, "Moringa oleifera L. Extracts as Bioactive Ingredients That Increase Safety of Body Wash Cosmetics," Dermatology Research and Practice, vol. 2020, p.8197902, Jul. 2020.
DOI: 10.1155/2020/8197902
Google Scholar
[21]
S. H. Hassanpour and A. Doroudi, "Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants," Avicenna Journal of Phytomedicine, vol. 13, no. 4, p.354, Aug. 2023.
Google Scholar
[22]
N. Younis, M. I. Khan, T. Zahoor, and M. N. Faisal, "Phytochemical and antioxidant screening of Moringa oleifera for its utilization in the management of hepatic injury," Frontiers in Nutrition, vol. 9, p.1078896, Dec. 2022.
DOI: 10.3389/fnut.2022.1078896
Google Scholar
[23]
S. Jaast and A. Grewal, "Green synthesis of silver nanoparticles, characterization, and evaluation of their photocatalytic dye degradation activity," Current Research in Green and Sustainable Chemistry, vol. 4, Oct. 2021, Article 100195.
DOI: 10.1016/j.crgsc.2021.100195
Google Scholar
[24]
F. Y. Alzoubi, A. A. Ahmad, I. A. Aljarrah, A. B. Migdadi, and Q. M. Al-Bataineh, "Localize surface plasmon resonance of silver nanoparticles using Mie theory," J Mater Sci: Mater Electron, vol. 34, no. 32, p.2128, Nov. 2023.
DOI: 10.1007/s10854-023-11304-x
Google Scholar
[25]
S. K. Ghosh and T. Pal, "Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications," Chem. Rev., vol. 107, no. 11, p.4797–4862, Nov. 2007.
DOI: 10.1021/cr0680282
Google Scholar
[26]
Eguico, C. S.-A., Abanto, M. M., Cendaña, H. T., Perez Famero, D. A., Pediongco, K. B., Cruz Evangelista, A. D., & Del Castillo Rubi, R. V., "Sonophotopythochemical Functionalization of Graphene Oxide - Al - Zn Bimetal Nanocomposite for Corrosion Inhibition." Appl. Sci. Eng., vol 18, no.2., 2024.
DOI: 10.14416/j.asep.2024.10.004
Google Scholar
[27]
M. O. Oloyede, "Green synthesis of silver nanoparticles using Moringa oleifera leaf extract and their characterization," Materials Today: Proceedings, vol. 37, pp.1869-1872, 2021.
Google Scholar
[28]
N. Liaqat, N. Jahan, Khalil-ur-Rahman, T. Anwar, and H. Qureshi, "Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay," Frontiers in Chemistry, vol. 10, p.952006, Aug. 2022.
DOI: 10.3389/fchem.2022.952006
Google Scholar
[29]
Z. Shang and J. Zhu, "Overview on plant extracts as green corrosion inhibitors in the oil and gas fields," Journal of Materials Research and Technology, vol. 15, p.5078–5094, Nov. 2021.
DOI: 10.1016/j.jmrt.2021.10.095
Google Scholar
[30]
"CH103 - Chapter 7: Chemical Reactions in Biological Systems," Chemistry. Accessed: Oct. 23, 2024. [Online]. Available: https://wou.edu/chemistry/courses/online-chemistry-textbooks/ch103-allied-health-chemistry/ch103-chapter-6-introduction-to-organic-chemistry-and-biological-molecules/
Google Scholar
[31]
Latiza, R. J. P., Olay, J., Eguico, C., Yan, R. J., & Rubi, R. V. (2025a). Environmental applications of carbon dots: Addressing microplastics, air and water pollution. Journal of Hazardous Materials Advances, 17(100591), 100591
DOI: 10.1016/j.hazadv.2025.100591
Google Scholar
[32]
M. Akter et al., "A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives," Journal of Advanced Research, vol. 9, p.1–16, Jan. 2018.
Google Scholar
[33]
Latiza, R. J. P., Olay, J., Eguico, C., Yan, R. J., & Rubi, R. V. (2025). Surface matters: passivation in carbon dot synthesis—a critical review. Journal of Materials Science
DOI: 10.1007/s10853-025-10764-2
Google Scholar
[34]
S. Yadav et al., "Green nanoparticles for advanced corrosion protection: Current perspectives and future prospects," Applied Surface Science Advances, vol. 21, p.100605, Jun. 2024.
DOI: 10.1016/j.apsadv.2024.100605
Google Scholar
[35]
M. T. Alhaffar, S. A. Umoren, I. B. Obot, and S. A. Ali, "Isoxazolidine derivatives as corrosion inhibitors for low carbon steel in HCl solution: experimental, theoretical and effect of KI studies," RSC Adv., vol. 8, no. 4, p.1764–1777, Jan. 2018.
DOI: 10.1039/c7ra11549k
Google Scholar
[36]
A. O. Okewale and O. A. Adesina, "Kinetics and thermodynamic study of corrosion inhibition of mild steel in 1.5m HCl medium using cocoa leaf extract as inhibitor," Journal of Applied Sciences and Environmental Management, vol. 24, no. 1, Art. no. 1, Feb. 2020.
DOI: 10.4314/jasem.v24i1.6
Google Scholar
[37]
K. Bijapur, V. Molahalli, A. Shetty, A. Toghan, P. De Padova, and G. Hegde, "Recent Trends and Progress in Corrosion Inhibitors and Electrochemical Evaluation," Applied Sciences, vol. 13, no. 18, Art. no. 18, Jan. 2023.
DOI: 10.3390/app131810107
Google Scholar
[38]
Ebadi, M., Basirun, W. J., Khaledi, H., & Ali, H. M. (2012). Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media. Chemistry Central Journal, 6(1), 163
DOI: 10.1186/1752-153X-6-163
Google Scholar
[39]
Circular economy integration in 1G+2G sugarcane bioethanol production: Application of carbon capture, utilization and storage, closed-loop systems, and waste valorization for sustainability. (n.d.). Kmutnb.Ac.Th. Retrieved April 5, 2025, from https://ojs.kmutnb.ac.th/index.php/ijst/article/view/7448
DOI: 10.14416/j.asep.2024.07.005
Google Scholar
[40]
S. Km, B. M. Praveen, and B. K. Devendra, "A review on corrosion inhibitors: Types, mechanisms, electrochemical analysis, corrosion rate and efficiency of corrosion inhibitors on mild steel in an acidic environment," Results in Surfaces and Interfaces, vol. 16, p.100258, Aug. 2024.
DOI: 10.1016/j.rsurfi.2024.100258
Google Scholar
[41]
Soto Puelles, J., Ghorbani, M., Yunis, R., Machuca, L. L., Terryn, H., Forsyth, M., & Somers, A. E. (2021). Electrochemical and surface characterization study on the corrosion inhibition of mild steel 1030 by the cationic surfactant cetrimonium trans-4-hydroxy-cinnamate. ACS Omega, 6(3), 1941–1952
DOI: 10.1021/acsomega.0c04733
Google Scholar
[42]
Hossain, N., Asaduzzaman Chowdhury, M., & Kchaou, M. (2021). An overview of green corrosion inhibitors for sustainable and environment friendly industrial development. Journal of Adhesion Science and Technology, 35(7), 673–690
DOI: 10.1080/01694243.2020.1816793
Google Scholar
[43]
E. Ituen, A. Singh, Y. Li, and O. Akaranta, "Biomass-mediated synthesis of silver nanoparticles composite and application as green corrosion inhibitor in oilfield acidic cleaning fluid," Phytochemical Bulletin, vol. 3, May 2021.
DOI: 10.1016/j.clet.2021.100119
Google Scholar
[44]
Scimeca, M., Bischetti, S., Lamsira, H. K., Bonfiglio, R., & Bonanno, E. (2018). Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry: EJH, 62(1), 2841
DOI: 10.4081/ejh.2018.2841
Google Scholar