Properties of Epoxy Coatings Electrodeposited from Cationic Epoxy Suspensions Prepared by Different Secondary Amine's Volumes

Article Preview

Abstract:

Epoxy resins are widely recognised as the most commonly used polymers, playing a crucial role in both industrial and domestic applications; however, the effect of secondary amine volume on the electrophoretic deposition (EPD) performance of epoxy resin remains underexplored. This study investigates the influence of varying volumes of N-methylethanolamine (MEA) during the synthesis of cationic epoxy on the chemical composition, thickness, surface morphology, and dielectric properties of electrodeposited epoxy coatings at a voltage of 60 V. Cationic diglycidyl ether of bisphenol A (DGEBA) epoxy resin was formulated with 0.5, 1.0, and 1.5 ml MEA, and then deposited onto galvanised substrates via EPD. Increasing the MEA volume from 0.5 ml to 1.5 ml during the formulation of cationic DGEBA resulted in a 50.6% reduction in deposited coating thickness (from 46.6 µm to 23.0 µm) and a 98% decrease in the corresponding dielectric constant (from 102 to 1.98 at a frequency of 1.27 Hz). These variations were confirmed by Fourier-transform infrared spectroscopy, electrochemical impedance spectroscopy, and field-emission scanning electron microscopy, which indicated changes in chemical bonding and surface uniformity. The findings highlight the critical role of MEA volume in determining the performance of electrodeposited epoxy coatings and offer guidance for optimising EPD formulations for improved insulation and structural stability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1164)

Pages:

75-83

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Pourhashem, M.R. Vaezi, A. Rashidi, M.R. Bagherzadeh, Exploring corrosion protection properties of solvent-based epoxy-graphene oxide nanocomposite coatings on mild steel, Corros. Sci. 115 (2017) 78–92.

DOI: 10.1016/j.corsci.2016.11.008

Google Scholar

[2] Q. Xiang, F. Xiao, Applications of epoxy materials in pavement engineering, Constr. Build. Mater. 235 (2020) 117529.

Google Scholar

[3] J.R.M. D'Almeida, S.N. Monteiro, The effect of the resin/hardener ratio on the compressive behavior of an epoxy system, Polym. Test. 15(4) (1996) 329–339.

DOI: 10.1016/0142-9418(95)00037-2

Google Scholar

[4] J. Chen, N. Chu, M. Zhao, F.L. Jin, S.J. Park, Synthesis and application of thermal latent initiators of epoxy resins: A review, J. Appl. Polym. Sci. 137(48) (2020) 49592.

DOI: 10.1002/app.49592

Google Scholar

[5] A.S. Mora, R. Tayouo, B. Boutevin, G. David, S. Caillol, A perspective approach on the amine reactivity and the hydrogen bonds effect on epoxy-amine systems, Eur. Polym. J. 123 (2020) 109460.

DOI: 10.1016/j.eurpolymj.2019.109460

Google Scholar

[6] E. Kalinina, E. Pikalova, Opportunities, challenges and prospects for electrodeposition of thin-film functional layers in solid oxide fuel cell technology, Mater. 14(19) (2021) 1–39

DOI: 10.3390/ma14195584

Google Scholar

[7] Chemibond, Auto-Fix 8800-A & B: Product Information. 2024.

Google Scholar

[8] J. Bosso, L. Burrell, M. Wismer, U.S. Patent 3,839,252 (1974).

Google Scholar

[9] M. Wismer, J.F. Bosso, U.S. Patent 4,419,467 (1983).

Google Scholar

[10] K.-T. Lau, J. Narayanasamy, C.C. Sorrell, Electrophoretic deposition as coating method for thermal conductive hexagonal boron nitride particles, in: Z. Mustafa, N.S. Khashi'ie (Eds.), Progress on Advanced & Smart Materials in Engineering and Mathematics, Vol. 3, Penerbit UTeM Press, Durian Tunggal, 2025, pp.65-82.

Google Scholar

[11] R.E. Koh, C.C. Sun, Y.L. Yap, P.L. Cheang, A.H. You, Investigation of lithium transference number in PMMA composite polymer electrolytes using Monte Carlo (MC) simulation and recurrence relation, J. Electrochem. Sci. Technol. 12(2) (2021) 217–224.

DOI: 10.33961/jecst.2020.01459

Google Scholar

[12] J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles, Mater. Res. Bull. 93 (2017) 63–73.

DOI: 10.1016/j.materresbull.2017.04.013

Google Scholar

[13] R.O. Allen, P. Sanderson, Characterization of epoxy glues with FTIR, Appl. Spectrosc. Rev. 24(3–4) (1988) 175–187.

DOI: 10.1080/05704928808060457

Google Scholar

[14] R.B. Leggat, S.A. Taylor, S.R. Taylor, Adhesion of epoxy to hydrotalcite conversion coatings: II. Surface modification with ionic surfactants, Colloids Surf. A Physicochem. Eng. Asp. 210(1) (2002) 83–94.

DOI: 10.1016/s0927-7757(02)00210-8

Google Scholar

[15] A.B.D. Nandiyanto, R. Ragadhita, M. Fiandini, Interpretation of Fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition, Indones. J. Sci. Technol. 8(1) (2023) 113–126.

DOI: 10.17509/ijost.v8i1.53297

Google Scholar

[16] S. Morsch, Y. Liu, S.B. Lyon, S.R. Gibbon, B. Gabriele, M. Malanin, K.-J. Eichhorn, Examining the early stages of thermal oxidative degradation in epoxy-amine resins, Polym. Degrad. Stab. 176 (2020) 109147.

DOI: 10.1016/j.polymdegradstab.2020.109147

Google Scholar

[17] J. Li, S. Tang, M. Lyu, H. Zhu, Y. Luo, C. Zhang, A dual cross-linking strategy enables fully bio-based epoxy thermosets with superior low dielectric properties and mechanical properties, Ind. Crops Prod. 220 (2024) 119117.

DOI: 10.1016/j.indcrop.2024.119117

Google Scholar

[18] J.R. Lee, F.L. Jin, S.J. Park, J.M. Park, Study of new fluorine-containing epoxy resin for low dielectric constant, Surf. Coat. Technol. 180–181 (2004) 650–654.

DOI: 10.1016/j.surfcoat.2003.10.111

Google Scholar

[19] M.S. McMaster, T.E. Yilmaz, A. Patel, A. Maiorana, I. Manas-Zloczower, R. Gross, K.D. Singer, Dielectric properties of bio-based diphenolate ester epoxies, ACS Appl. Mater. Interfaces 10(16) (2018) 13924–13930.

DOI: 10.1021/acsami.7b19085

Google Scholar

[20] K.T. Lau, S. Samsudin, Electrophoretic deposition of hexagonal boron nitride particles from low conductivity suspension, Pertanika J. Sci. Technol. 30(2) (2022) 1237–1256.

DOI: 10.47836/pjst.30.2.21

Google Scholar