Carbonized Residues Electrical Resistance as a Result of the Supramolecular Structure Organization

Article Preview

Abstract:

The carbonized materials structure levels from molecular to macrostructure is analyzed. A study was conducted to find correlations between the granular carbonized materials electrical resistance and other substance physicochemical properties. It is proven theoretically and experimentally that determining the electrical resistance for a granular material, rather than a finely ground sample, is a more informative indicator for reflecting the microstructural features of the material, its reactivity, strength, and clarifying the carbonization conditions. A method is developed for determining the granular materials electrical resistance in the rotating drum interelectrode space, with determination of the indicator value in the cold and hot state for the substance under investigation. An indicator of the granular matter electrical resistance based on the heating time to 670 °C at a drum power supply constant voltage is introduced. Calculated dependencies is obtained for predicting, based on experiment results, some quality indicators for such a carbonized material as metallurgical coke: structural strength, apparent density, reactivity, gasification degree, and electrical resistivity. Better correlations is achieved with these indicators than with the standard electrical resistance on the "micropress" device, which indicates a better reflection of the carbonized materials substance supramolecular structure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1164)

Pages:

133-143

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. G. Tregubov, D. V. Miroshnichenko, Methods of decrease in sulfur content in coke (review). Koks i Khimiya. 6 (2005) 21–28.

Google Scholar

[2] K. Afanasenko, A. Romin, Yu. Klyuchka, Kh. Hasanov, V. Lypovyi, Epoxidized dinaphthol application as the basis for binder with advanced carbonation level to reducing its flammability. Materials Science Forum. 1006 (2020) 41–46.

DOI: 10.4028/www.scientific.net/msf.1006.41

Google Scholar

[3] T. Shnal, S. Pozdieiev, S. Sidnei, A. Shvydenko, Determination of the Charring Rate of Timber to Estimate the Fire Resistance of Structures at Real Temperature Modes of Fires. Lecture Notes in Civil Engineering. 100 (2021) 409–418.

DOI: 10.1007/978-3-030-57340-9_50

Google Scholar

[4] M. Zmaha, S. Pozdieiev, Y. Zmaha, O. Nekora, S. Sidnei, Research of the behavioral of the wooden beams with fire protection lining under fire loading. Materials Science and Engineering. 1021/1 (2021) 012031.

DOI: 10.1088/1757-899x/1021/1/012031

Google Scholar

[5] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical modeling of fire-proof efficiency of coatings based on silicate composition. Materials Science Forum. 1006 (2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[6] O. Skorodumova, O. Tarakhno, O. Chebotaryova, Y. Hapon, F. M. Emen, Formation of fire dretardant properties in elastic silica coatings for textile materials. Materials Science Forum. 1006 (2020) 25–31.

DOI: 10.4028/www.scientific.net/msf.1006.25

Google Scholar

[7] O. Skorodumova, O. Tarakhno, O. Chebotaryova, O. Bezuglov, F. Emen, The use of sol-gel method for obtaining fire-resistant elastic coatings on cotton fabrics. Materials Science Forum. 1038 (2021) 468–479.

DOI: 10.4028/www.scientific.net/msf.1038.468

Google Scholar

[8] NFPA 921. Guide for Fire and Explosion Investigations. Quincy: National Fire Protection Association, 2024.

Google Scholar

[9] V. A. Mykhailyk, Yu. F. Snezhkin, O. I. Oranska, T. V. Korinchevska, D. M. Korinchuk, Study of the thermal properties of solid residues of milled peat after the humus substances extraction. Thermophysics and Thermal Power Engineering. 37/3 (2015) 54–64 [in Ukrainian].

DOI: 10.31472/ihe.3.2015.07

Google Scholar

[10] M. Suzanne, G. Erez, M. Chaouchi, Ch. Bretonnet, A. Thiry, Relationship between char depth of wood and cumulative heat exposure for fire investigation. Fire Safety Journal. 140 (2023) 103856.

DOI: 10.1016/j.firesaf.2023.103856

Google Scholar

[11] ISO 5660-1, Reaction-to-fire tests, International Standard. Geneva: Vernier, 2021.

Google Scholar

[12] E1354-23, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter. West Conshohocken: ASTM International, 2024.

DOI: 10.1520/e1354-16a

Google Scholar

[13] ISO 18894:2018, Coke – Determination of coke reactivity index (CRI) and coke strength after reaction (CSR), International Standard. Geneva: Vernier, 2024.

DOI: 10.3403/30348326

Google Scholar

[14] D. G. Tregubov, D. V. Miroshnichenko, M. L. Ulanovskij, Thermomechanochemical evaluation of quality of coke. Koks i Khimiya. 11 (2004) 14–19.

Google Scholar

[15] Sposib kompensatsiynoho dyferentsiyno-termichnoho analizu teplovykh efektiv: pat. 82249 UA. / Trehubov D.H., Tarakhno O.V., Zhernoklʹov K.V.; Application filed and Current Assignee by NUCP of Ukraine – u 2013 01866; Priority to 15.02.2013; Publication of 25.07.2013, №14. [in Ukrainian].

Google Scholar

[16] DSTU 8831:2019, Koks, Metod vyznachennya pytomoho elektrychnoho oporu poroshku koksu kamʺyanovuhilʹnoho. K.: UkrNDNTS, 2019 [in Ukrainian].

Google Scholar

[17] Sposib elektrychnoyi otsinky yakosti koksu: pat. 116026 UA. / Trehubov D.H., Hapon YU.K., Dadashov I.F., Chyrkina-Kharlamova M.A., Sharshanov A.YA., Minsʹka N.V., Trehubova F.D.; Application filed and Current Assignee by NUCP of Ukraine. - u 2023 04462; Priority to 21.09.2023; Publication of 01.05.2024, № 18. [in Ukrainian].

Google Scholar

[18] D. G. Tregubov, Application of the thermal testing method of materials in the rotating chamber. Problems of fire safety. 34 (2013) 161–166 [in Ukrainian].

Google Scholar

[19] F. Meng, S. Gupta, D. French, P. Koshy, Ch. Sorrell, Y. Shen, Characterization of microstructure and strength of coke particles and their dependence on coal properties. Powder Technology. 320 (2017) 249–256.

DOI: 10.1016/j.powtec.2017.07.046

Google Scholar

[20] D. Tregubov, O. Tarakhno, V. Deineka, F. Trehubova, Oscillation and Stepwise of Hydrocarbon Melting Temperatures as a Marker of their Cluster Structure. Solid State Phenomena. 334 (2022) 124–130.

DOI: 10.4028/p-3751s3

Google Scholar

[21] Yu. Hapon, D. Tregubov, E. Slepuzhnikov, V. Lypovyi, Cluster Structure Control of Coatings by Electrochemical Coprecipitation of Metals to Obtain Target Technological Properties, Solid State Ph., 334 (2022) 70–76.

DOI: 10.4028/p-4ws8gz

Google Scholar

[22] D. B. Wiedemeier, S. Abiven, W. C. Hockaday, M. Keiluweit, M. Kleber, C. A. Masiello, Aromaticity and degree of aromatic condensation of char. Organic Geochemistry. 78 (2015) 135–143.

DOI: 10.1016/j.orggeochem.2014.10.002

Google Scholar

[23] Quickly find chemical information from authoritative sources, Pubchem, U.S. National Library of Medicine. Information on https://pubchem.ncbi.nlm.nih.gov/

Google Scholar

[24] D. G. Tregubov, S. A. Slobodskoj, The study of microarc discharge electric characteristics in wastewater treatment. Koks i Khimiya. 9 (1997) 32–34.

Google Scholar

[25] Li Kejiang, B. Mansoor, Z. Jianliang, T. Liu, T. Yang, Advanced coke quality characterization and cokemaking techniques based on in depth understanding of coke behavior inside blast furnace, AIS Tech. Proceeding, Pittsburgh, Pennsylvania, USA, (2016) 273–283.

Google Scholar

[26] I. V. Shulga, I. V. Miroshnichenko, I. M. Ryshchenko, D. V. Miroshnichenko, Moisture content of wet-quenched coke. Coke and Chemistry. 62/9 (2019) 402–407.

DOI: 10.3103/s1068364x19090084

Google Scholar

[27] K. Korytchenko, O. Sakun, D. Dubinin, Y. Khilko, E. Slepuzhnikov, A. Nikorchuk, I. Tsebriuk, Experimental investigation of the fire-extinguishing system with a gas-detonation charge for fluid acceleration. Eastern-European Journal of Enterprise Technologies. 3/5(93) (2018) 47–54.

DOI: 10.15587/1729-4061.2018.134193

Google Scholar

[28] D. Dubinin, K. Korytchenko, A. Lisnyak, I. Hrytsyna, V. Trigub, Improving the installation for fire extinguishing with finelydispersed water. Eastern-European Journal of Enterprise Technologies. 2/10(92) (2018) 38–43.

DOI: 10.15587/1729-4061.2018.127865

Google Scholar

[29] K. Mygalenko, V. Nuyanzin, A. Zemlianskyi, A. Dominik, S. Pozdieiev, Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies. 1/10(91) (2018) 31–37.

DOI: 10.15587/1729-4061.2018.121727

Google Scholar

[30] A. Chernukha, P. Kovalov, O. Bezuglov, R. Meleshchenko, O. Cherkashyn, O. Khmelyk, IInvestigation of ash wood during treatment with fire-protective agent DSA. Problems of Emergency Situations. 34 (2021) 21–28.

DOI: 10.52363/2524-0226-2021-34-2

Google Scholar