[1]
D. Chu, R. Hasanagić, L. Fathi, M. Bahmani, M. Humar, Water absorption capacity and coating adhesion on thermally modified and not-modified spruce wood (blue stained or free of blue stained), Journal of Renewable Materials. 11(12) (2023) 4061–4078.
DOI: 10.32604/jrm.2023.043657
Google Scholar
[2]
Y. Tsapko, O. Horbachova, S. Mazurchuk, А. Tsapko, K. Sokolenko, A. Matviichuk, Establishing regularities of wood protection against water absorption using a polymer shell, Eastern-European Journal of Enterprise Technologies. 1/10(115) (2022) 48–54.
DOI: 10.15587/1729-4061.2022.252176
Google Scholar
[3]
R.J. Ross, Wood Handbook: Wood as an Engineering Material. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021, p.509.
Google Scholar
[4]
F. Arriaga, X. Wang, G. Íñiguez-González, D.F. Llana, M. Esteban, P. Niemz, Mechanical properties of wood: a review, Forests. 14(6) (2023) 1202.
DOI: 10.3390/f14061202
Google Scholar
[5]
S. Kulman, L. Boiko, Y. Bugaenko, J. Sedliačik, Creep life prediction by the basic models of deformation-destruction kinetics of wood-based composites, Acta Facultatis Xylologiae Zvolen. 63(2) (2021) 39–53.
Google Scholar
[6]
W. Sonderegger, S. Hering, P. Niemz, Thermal behaviour of Norway spruce and European beech in and between the principal anatomical directions, Holzforschung. 65 (2011) 369–375.
DOI: 10.1515/hf.2011.036
Google Scholar
[7]
H. Meng, X. Yu, B. Chen, P. Ren, J. Zhao, Parameter estimations on measurement accuracy for thermal conductivity of wood using the transient plane source method, Forests. 15(10) (2024) 1820.
DOI: 10.3390/f15101820
Google Scholar
[8]
Y. Li, B.Y. Lattimer, S.W. Case, Measurement and modelling of thermal and physical properties of wood construction materials, Construction and Building Materials. 284 (2021) 122780.
DOI: 10.1016/j.conbuildmat.2021.122780
Google Scholar
[9]
S. Kulman, L. Boiko, J. Sedliačik, Long-term strength prediction of wood based composites using the kinetic equations, Scientific Horizons. 24(3) (2021) 9–18.
DOI: 10.48077/scihor.24(3).2021.9-18
Google Scholar
[10]
P. Čermák, L. Rautkari, P. Horáček, B. Saake, P. Rademacher, P. Sablík, Analysis of dimensional stability of thermally modified wood affected by re-wetting cycles, BioResources. 10(2) (2015) 3242–3253.
DOI: 10.15376/biores.10.2.3242-3253
Google Scholar
[11]
S. Kulman, L. Boiko, D.Н. Gurová, J. Sedliačik, Prediction the fatigue life of wood-based panels, Wood Research. 64(3) (2019) 373–388.
Google Scholar
[12]
C. Brischke, G. Alfredsen, Wood-water relatio ships and their role for wood susceptibility to fungal decay, Appl. Microbiol. Biotechnol. 104 (2020) 3781–3795.
DOI: 10.1007/s00253-020-10479-1
Google Scholar
[13]
M. Broda, Natural compounds for wood protection against fungi – a review, Molecules. 25(15) (2020) 3538.
DOI: 10.3390/molecules25153538
Google Scholar
[14]
S. Liu, H. Lu, R. Hu, A. Shupe, L. Lin, B. Liang, A sustainable woody biomass biorefinery, Biotechnol. 30 (2012) 785–810.
DOI: 10.1016/j.biotechadv.2012.01.013
Google Scholar
[15]
J.P. Lancha1, P. Perré, J. Colin, N. Ruscassier, G. Almeida, Multiscale investigation on the chemical and anatomical changes of lignocellulosic biomass for different severities of hydrothermal treatment, Scientific Reports. 11(8444) (2021) 1–16.
DOI: 10.1038/s41598-021-87928-y
Google Scholar
[16]
O. Pinchevska, A. Spirochkin, R. Oliynyk, J. Sedliačik, Selection of the efficient drying schedule in conventional chambers, Acta Facultatis Xylologiae. 60(2) (2018) 125–134.
Google Scholar
[17]
M. Humar, B. Lesar, D. Kržišnik, Moisture performance of façade elements made of thermally modified norway spruce wood, Forests. 11(3) (2020) 348.
DOI: 10.3390/f11030348
Google Scholar
[18]
C. Brischke, L. Meyer, T. Bornemann, The potential of moisture content measurements for testing the durability of timber products, Wood Sci. Technol. 47(4) (2013) 869–886.
DOI: 10.1007/s00226-013-0548-5
Google Scholar
[19]
J. Barański, A. Suchta, S. Barańska, I. Klement, T. Vilkovská, P. Vilkovský, Wood moisture-content measurement accuracy of impregnated and nonimpregnated wood, Sensors. 21 (2021) 7033.
DOI: 10.3390/s21217033
Google Scholar
[20]
E.T. Engelund, L.G. Thygesen, S. Svensson, C.A.S. Hill, A critical discussion of the physics of wood-water interactions, Wood Sci. Technol. 47 (2013) 141–161.
DOI: 10.1007/s00226-012-0514-7
Google Scholar
[21]
S. Kulman, L. Boiko, D.Н. Gurová, J. Sedliačik, The effect of temperature and moisture changes on modulus of elasticity and modulus of rupture of particleboard, Acta Facultatis Xylologiae Zvolen. 61(1) (2019) 43–52.
Google Scholar
[22]
V. Tamme, A. Jänes, T. Romann, H. Tamme, P. Muiste, A. Kangur, Investigation and modelling of the electrical charging effect in birch wood above the fibre saturation point (FSP), Forestry Studies. 77 (2023) 21–37.
DOI: 10.2478/fsmu-2022-0010
Google Scholar
[23]
S. Casans Berga, R. Garcia-Gil, A.E. Navarro Anton, A. Rosado-Muñoz, Novel wood resistance measurement method reducing the initial transient instabilities arising in DC methods due to polarization effects, Electronics. 8(11) (2019) 1253.
DOI: 10.3390/electronics8111253
Google Scholar
[24]
K. Zhou, Y. Chen, C. Sun, B. Na, Prediction of veneer moisture content based on near infrared spectroscopy, BioResources. 17(4) (2022) 5878–5889.
DOI: 10.15376/biores.17.4.5878-5889
Google Scholar
[25]
H. Li, M. Perrin, F. Eyma, X. Jacob, V. Gibia, Moisture content monitoring in glulam structures by embedded sensors via electrical methods, Wood Science and Technology. 52 (2018) 733–752.
DOI: 10.1007/s00226-018-0989-y
Google Scholar
[26]
C.A.S. Hill, Wood modification: chemical, thermal and other processes. Wiley Series in Renewable Resources, Chichester, United Kingdom, 2006, p.239.
Google Scholar
[27]
S. Augustina, W. Dwianto, I. Wahyudi, W. Syafii, P. Gérardin, S.D. Marbun, Wood impregnation in relation to its mechanisms and properties enhancement, BioResources. 18(2) (2023) 4332–4372.
DOI: 10.15376/biores.18.2.augustina
Google Scholar
[28]
Y. Dong, K. Wang, J. Li, S. Zhang, S.Q. Shi, Environmentally benign wood modifications: a review, ACS Sustainable Chemistry and Engineering. 8(9) (2020) 3532–3540.
DOI: 10.1021/acssuschemeng.0c00342
Google Scholar
[29]
S. Ali, S.A. Hussain, M.Z.M. Tohir, Fire test and effects of fire retardant on the natural ability of timber: a review, Pertanika Journal of Science and Technology. 27(2) (2019) 867–895.
Google Scholar
[30]
O. Horbachova, N. Buiskykh, S. Mazurchuk, V. Lomaha, Acetylation of aspen and alder wood. preliminary tests, Key Engineering Materials. 986 (2024) 45–52.
DOI: 10.4028/p-d9fylx
Google Scholar
[31]
X. Zhang, L. Li, F. Xu, Chemical characteristics of wood cell wall with an emphasis on ultrastructure: a mini-review, Forests. 13(3) (2022) 439.
DOI: 10.3390/f13030439
Google Scholar
[32]
C. Waldner, A. Mayrhofer, U. Hirn, Measuring liquid penetration in thin, porous sheets with ultrasound and drop absorption – scope and limitations, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650 (2022) 129551.
DOI: 10.1016/j.colsurfa.2022.129551
Google Scholar
[33]
M.C. Potter, Engineering analysis. New York: Springer, 2018, p.444.
Google Scholar
[34]
T. Li, Q. Wu, W. Lu, J. Zhang, Z. Yue, Y. Jie, J. Zhang, Z. Cheng, W. Ji, J. Wu, Effects of different accelerated aging modes on the mechanical properties, color and microstructure of wood, Journal of Building Engineering. 981 (2024) 111026.
DOI: 10.1016/j.jobe.2024.111026
Google Scholar
[35]
E.E. Thybring, M. Fredriksson, S.L. Zelinka, S.V. Glass, Water in wood: a review of current understanding and knowledge gaps, Forests. 13 (2022) 2051.
DOI: 10.3390/f13122051
Google Scholar
[36]
T. Přívětivý, P. Samonil, Variation in downed deadwood density, biomass, and moisture during decomposition in a natural temperate forest, Forests. 12(10) (2021) 1352.
DOI: 10.3390/f12101352
Google Scholar
[37]
Y. Zhu, X. Wang, Z. Zha, W. Song, Using autoregressive polynomial regression models to study moisture content dynamics in wood, Conference: 9th International Conference on Cloud Computing and Big Data Analytics, ICCCBDA 2024. (2024) 200631 21–27.
DOI: 10.1109/icccbda61447.2024.10569597
Google Scholar
[38]
S.V. Glass, S.L. Zelinka, Moisture relations and physical properties of wood. Chapter 4, Wood as an Engineering Material; FPL-GTR-282, Ross, R.J., Ed.; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021, p.19.
Google Scholar
[39]
V. Tamme, P. Muiste, H. Tamme, Experimental study of resistance type wood moisture sensors for monitoring wood drying process above fibre saturation point, Forestry Studies. 59 (2013) 28–44.
DOI: 10.2478/fsmu-2013-0009
Google Scholar
[40]
O. Levenspiel, Engineering flow and heat exchange. Third edition, Springer Science+ Business Media, New York, 2014, p.409.
Google Scholar
[41]
S. Altun, A. Ozcifci, A. Şenel, E. Baysal, H. Toker, Effects of silica gel on leaching resistance and thermal properties of impregnated wood, Wood Research. 55(4) (2010) 101–112.
Google Scholar