Microstructural Processes in Thermal Creep of Zirconium Nuclear Fuel Cladding Tubes

Article Preview

Abstract:

The origin of the thermal creep of zirconium cladding tubes in all light water reactors is still the subject of deep confusion and intricate controversies. The reason for this inconvenient situation is obviously that microstructural processes in thermal creep remain poorly understood and this is due to the relatively small number of studies that have been carried out. In this study uniaxial creep tests in tension of zirconium alloy cladding tubes in the as-received and pre-hydrided states are followed by metallographic analysis of the as-received and crept specimens by light microscopy and SEM to explain the observed high-temperature creep behavior of the tubes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1166)

Pages:

3-8

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.B. Adamson, R. Pudling, Properties of zirconium alloys and their application in light water reactors (LWRs) components, in: K.L. Murty (Ed.) Materials Ageing and Degradation in Light Water Reactors – Mechanisms and Management, Woodhead Publishing Limited, Oxford, UK, 2013, pp.151-234, ISBN 978-0-85709-239-7.

DOI: 10.1533/9780857097453.2.151

Google Scholar

[2] S.J. Zinkle, H. Tanigawa, B.D. Wirth, Radiation and thermomechanical degradation effects in reactor structural alloys. Structural Alloys for Nuclear Energy Applications, Elsevier Inc., Amsterdam, Netherlands, 2019, pp.163-209.Chapter #5.

DOI: 10.1016/b978-0-12-397046-6.00005-8

Google Scholar

[3] K.J. Murty, S. Gollapudi, K. Ramaswamy, M.D. Mathew, I. Charit, Creep deformation of materials in lighter water reactors (LWRs)., in: K.L. Murty (Ed.) Materials Ageing and Deformation in Light Water Reactors – Mechanism and Management. Woodhead Publishing Limited, Oxford UK, 2013, pp.81-148. ISBN 978-0-85709-239-7.

DOI: 10.1533/9780857097453.1.81

Google Scholar

[4] R. Thieurmel, et al, Contribution to the understanding of brittle fracture conditions of zirconium alloy fuel cladding tubes during LOCA transient. J.Nucl. Mater. 527 (2019) 151815. https://doi.org/10.1016/j.j nucmat.2019.1518.

DOI: 10.1016/j.jnucmat.2019.151815

Google Scholar

[5] C. Toffolon-J.Maclet, J.C. Brachet, C. Servant, J.M. Joubert, P. Barberis, N. Dupin, P. Zeller, Contribution to thermodynamic calculations top metallurgical studies of multi-component zirconium basedalloys, J. ASTM Int. 5 (2008) 1-21. Paper ID JAI101122.

DOI: 10.1520/jai101122

Google Scholar

[6] V. Sklenicka, K. Kucharova, P. Kral, J. Dvorak, M. Kvapilova, V. Vrtilkova, J. Krejci, Investigation of the thermal creep behaviour of non-irradiated Zr1%Nb cladding alloys between 623 and 1223 K, J. Nucl. Mater. 583 (2023) 154518.https://doi.org/10.1016/j.jnucmat. 2023.154518.

DOI: 10.1016/j.jnucmat.2023.154518

Google Scholar

[7] M. Négyesi, J. Burda, O. Bláhová, S. Linhart, V. Vrtílková, The influence of hydrogen on oxygen distribution inside Zry-4 fuel cladding, J. Nucl. Mater. 416 (2011), 288-292.

DOI: 10.1016/j.jnucmat.2011.06.013

Google Scholar

[8] M. Négyesi, O. Bláhová, J. Adámek, J. Siegel, A. Přibyl, V. Vrtílková, Microstructure evolution in Zr1Nb fuel cladding during high-temperature oxidation. J. Nucl. Mater 416 (2011) 298-302.

DOI: 10.1016/j.jnucmat.2011.06.015

Google Scholar

[9] P. Kral et al., The Effect of Predeformation on Creep Strength of 9% Cr Steel. Materials 13 (2020) 5330.

DOI: 10.3390/ma13235330

Google Scholar

[10] J. Sopoušek, M. Svobodová, Thermodynamic Prediction of Zr-Nb-O-H Phase Diagram Sections, Solid State Phenomena 172-174 (2011) 487-492. https://doi.org/10.4028/ www.scientific.net/SSP.172-174.487.

DOI: 10.4028/www.scientific.net/ssp.172-174.487

Google Scholar